GLMdenoise improves multivariate pattern analysis of fMRI data

被引:20
|
作者
Charest, Ian [1 ,2 ]
Kriegeskorte, Nikolaus [2 ,3 ]
Kay, Kendrick N. [4 ]
机构
[1] Univ Birmingham, Sch Psychol, Birmingham, W Midlands, England
[2] Univ Cambridge, Med Res Council, Cognit & Brain Sci Unit, Cambridge, England
[3] Columbia Univ, Dept Psychol, Zuckerman Mind Brain Behav Inst, New York, NY 10027 USA
[4] Univ Minnesota, Dept Radiol, CMRR, Minneapolis, MN 55455 USA
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
BOLD fMRI; General linear model; Cross-validation; Correlated noise; Representational similarity analysis; Decoding; Classification; Denoising; Multivariate pattern analysis; BRAIN; NOISE; VARIANCE; BOLD; FLUCTUATIONS; REGRESSION; SIGNAL; SPACE;
D O I
10.1016/j.neuroimage.2018.08.064
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
GLMdenoise is a denoising technique for task-based fMRI. In GLMdenoise, estimates of spatially correlated noise (which may be physiological, instrumental, motion-related, or neural in origin) are derived from the data and incorporated as nuisance regressors in a general linear model (GLM) analysis. We previously showed that GLMdenoise outperforms a variety of other denoising techniques in terms of cross-validation accuracy of GLM estimates (Kay et al., 2013a). However, the practical impact of denoising for experimental studies remains unclear. Here we examine whether and to what extent GLMdenoise improves sensitivity in the context of multivariate pattern analysis of fMRI data. On a large number of participants (31 participants across 4 experiments; 3 T, gradient-echo, spatial resolution 2-3.75 mm, temporal resolution 1.3-2 s, number of conditions 32-75), we perform representational similarity analysis (Kriegeskorte et al., 2008a) as well as pattern classification (Haxby et al., 2001). We find that GLMdenoise substantially improves replicability of representational dissimilarity matrices (RDMs) across independent splits of each participant's dataset (average RDM replicability increases from r = 0.46 to r = 0.61). Additionally, we find that GLMdenoise substantially improves pairwise classification accuracy (average classification accuracy increases from 79% correct to 84% correct). We show that GLMdenoise often improves and never degrades performance for individual participants and that GLMdenoise also improves across-participant consistency. We conclude that GLMdenoise is a useful tool that can be routinely used to maximize the amount of information extracted from fMRI activity patterns.
引用
收藏
页码:606 / 616
页数:11
相关论文
共 50 条
  • [41] LISA improves statistical analysis for fMRI
    Gabriele Lohmann
    Johannes Stelzer
    Eric Lacosse
    Vinod J. Kumar
    Karsten Mueller
    Esther Kuehn
    Wolfgang Grodd
    Klaus Scheffler
    [J]. Nature Communications, 9
  • [42] Multivariate factorizable expectile regression with application to fMRI data
    Chao, Shih-Kang
    Haerdle, Wolfgang K.
    Huang, Chen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 1 - 19
  • [43] Prospective motion correction improves the sensitivity of fMRI pattern decoding
    Huang, Pei
    Carlin, Johan D.
    Alink, Arjen
    Kriegeskorte, Nikolaus
    Henson, Richard N.
    Correia, Marta M.
    [J]. HUMAN BRAIN MAPPING, 2018, 39 (10) : 4018 - 4031
  • [44] COVARIANCE PATTERN MIXTURE MODELS FOR THE ANALYSIS OF MULTIVARIATE HETEROGENEOUS LONGITUDINAL DATA
    Anderlucci, Laura
    Viroli, Cinzia
    [J]. ANNALS OF APPLIED STATISTICS, 2015, 9 (02): : 777 - 800
  • [45] Altered interhemispheric functional homotopy and connectivity in temporal lobe epilepsy based on fMRI and multivariate pattern analysis
    Ke Shi
    Xiaomin Pang
    Yiling Wang
    Chunyan Li
    Qijia Long
    Jinou Zheng
    [J]. Neuroradiology, 2021, 63 : 1873 - 1882
  • [46] Emotional Patterns: Multivariate Pattern Analysis and Test-Retest Reliability of an fMRI Emotional Faces Task
    McDermott, Timothy
    Puhl, Maria
    Kirlic, Namik
    Akeman, Elisabeth
    Al Zoubi, Obada
    Feinstein, Justin
    Aupperle, Robin
    [J]. BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S139 - S140
  • [47] Altered interhemispheric functional homotopy and connectivity in temporal lobe epilepsy based on fMRI and multivariate pattern analysis
    Shi, Ke
    Pang, Xiaomin
    Wang, Yiling
    Li, Chunyan
    Long, Qijia
    Zheng, Jinou
    [J]. NEURORADIOLOGY, 2021, 63 (11) : 1873 - 1882
  • [48] Multivariate Pattern Analysis of Electroencephalography Data in a Demand-Selection Task
    Lopez-Garcia, David
    Sobrado, Alberto
    Gonzalez-Penalver, J. M.
    Manuel Gorriz, Juan
    Ruz, Maria
    [J]. UNDERSTANDING THE BRAIN FUNCTION AND EMOTIONS, PT I, 2019, 11486 : 403 - 411
  • [49] Classification of Depressive Disorder based on RS-fMRI using Multivariate Pattern Analysis with Multiple Features
    Gu, Lishu
    Huang, Linlin
    Yin, Fei
    Cheng, Yuqi
    [J]. PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 61 - 66
  • [50] Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
    Misaki, Masaya
    Kim, Youn
    Bandettini, Peter A.
    Kriegeskorte, Nikolaus
    [J]. NEUROIMAGE, 2010, 53 (01) : 103 - 118