The combination of univariate and multivariate method for fMRI data analysis

被引:0
|
作者
Xia, WW [1 ]
Yan, LR [1 ]
Zhou, ZT [1 ]
Liu, YD [1 ]
Hu, DW [1 ]
机构
[1] Natl Univ Def Technol, Coll Mechatron & Automat, Dept Automat Control, Changsha 410073, Hunan, Peoples R China
关键词
single-frame; Z-score; region of interest(ROI); independent component analysis(ICA); sICA; tICA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A combined method of univariate and multivariate analysis is presented in this paper to give a new way for fMRI data analysis. The univaritate single-frame approach, which detects activations evoked by specific task and describes the temporal characteristics of activations without prior assumption of hemodynamic response function (HRF), can be applied as the first processing step. While the multivariate methods, i.e., spatial and temporal independent component analyses (sICA and tICA), are then brought in for analyzing the derived spatiotemporal activations in the regions of interest (ROIs). The ICAs can, in our combined approach, reveal the subtle spatial patterns of the regional activation areas.
引用
收藏
页码:1568 / 1573
页数:6
相关论文
共 50 条
  • [1] Reflections on univariate and multivariate analysis of metabolomics data
    Edoardo Saccenti
    Huub C. J. Hoefsloot
    Age K. Smilde
    Johan A. Westerhuis
    Margriet M. W. B. Hendriks
    [J]. Metabolomics, 2014, 10 : 361 - 374
  • [2] Reflections on univariate and multivariate analysis of metabolomics data
    Saccenti, Edoardo
    Hoefsloot, Huub C. J.
    Smilde, Age K.
    Westerhuis, Johan A.
    Hendriks, Margriet M. W. B.
    [J]. METABOLOMICS, 2014, 10 (03) : 361 - 374
  • [3] Principal Feature Analysis: A Multivariate Feature Selection Method for fMRI Data
    Wang, Lijun
    Lei, Yu
    Zeng, Ying
    Tong, Li
    Yan, Bin
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013
  • [4] Handbook of univariate and multivariate data analysis and interpretation with SPSS
    Putcha, Venkata
    Raton, Boca
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2008, 171 : 317 - 317
  • [5] Characterization of the univariate and multivariate techniques on the analysis of simulated and fMRI datasets with visual task
    Chen, C.L.
    Wu, T.H.
    Wu, Y.T.
    Huang, Y.H.
    Lee, J.S.
    [J]. IEEE Nucl. Sci. Symp. Conf. Rec., 2003, (2468-2472):
  • [6] SOME INTERPRETATIONS IN THE ANALYSIS OF UNIVARIATE AND MULTIVARIATE TRANSFORMED DATA
    BARGMANN, RE
    [J]. BIOMETRICS, 1959, 15 (02) : 330 - 330
  • [7] Characterization of the univariate and multivariate techniques on the Analysis of Simulated and fMRI Datasets with Visual Task
    Chen, CL
    Wu, TH
    Wu, YT
    Huang, YH
    Lee, JS
    [J]. 2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 2468 - 2472
  • [8] Multivariate Granger Causality Analysis of fMRI Data
    Deshpande, Gopikrishna
    LaConte, Stephan
    James, George Andrew
    Peltier, Scott
    Hu, Xiaoping
    [J]. HUMAN BRAIN MAPPING, 2009, 30 (04) : 1361 - 1373
  • [10] Generating univariate and multivariate nonnormal data
    Lee, Sunbok
    [J]. STATA JOURNAL, 2015, 15 (01): : 95 - 109