Photostable and Proteolysis-Resistant Forster Resonance Energy Transfer-Based Calcium Biosensor

被引:5
|
作者
Nguyen, Dat [6 ]
Behrens, Danielle M. [6 ]
Sen, Sanjana [7 ]
Najdahmadi, Avid [4 ,8 ]
Pham, Jessica N. [9 ]
Speciale, Gaetano [9 ]
Lawrence, Micah M. [6 ]
Majumdar, Sudipta [9 ]
Weiss, Gregory A. [1 ,2 ]
Botvinick, Elliot L. [3 ,4 ,5 ]
机构
[1] Univ Calif Irvine, Dept Mol Biol & Biochem, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Beckman Laser Inst, Dept Biomed Engn, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Med Clin, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Dept Surg, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA
[7] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA
[8] Univ Calif Irvine, Beckman Laser Inst, Irvine, CA 92697 USA
[9] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
FRET; PROTEIN; SENSORS; TAG;
D O I
10.1021/acs.analchem.0c00573
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Forster resonance energy transfer (FRET)based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.
引用
收藏
页码:7683 / 7689
页数:7
相关论文
共 50 条
  • [1] CHARACTERIZATION OF THE BIOLOGICAL ACTIVITIES OF HUMAN LUTEINIZING HORMONE AND CHORIONIC GONADOTROPIN BY A FORSTER RESONANCE ENERGY TRANSFER-BASED BIOSENSOR ASSAY
    Mazina, Olga
    Luik, Tanel
    Kopanchuk, Sergei
    Salumets, Andres
    Rinken, Ago
    ANALYTICAL LETTERS, 2015, 48 (17) : 2799 - 2809
  • [2] A Forster Resonance Energy Transfer-Based Sensor of Steric Pressure on Membrane Surfaces
    Houser, Justin R.
    Hayden, Carl C.
    Thirumalai, D.
    Stachowiak, Jeanne C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (49) : 20796 - 20805
  • [3] Forster Resonance Energy Transfer-Based Biosensing Platform with Ultrasmall Silver Nanoclusters as Energy Acceptors
    Xiao, Yan
    Shu, Fan
    Wong, Kwok-Yin
    Liu, Zhihong
    ANALYTICAL CHEMISTRY, 2013, 85 (18) : 8493 - 8497
  • [4] Forster resonance energy transfer-based total internal reflection fluorescence reader for apoptosis
    Bruns, Thomas
    Angres, Brigitte
    Steuer, Heiko
    Weber, Petra
    Wagner, Michael
    Schneckenburger, Herbert
    JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (02)
  • [5] Forster Resonance Energy Transfer-Based Stability Assessment of PLGA Nanoparticles in Vitro and in Vivo
    Swider, Edyta
    Maharjan, Sanish
    Houkes, Karlijne
    van Riessen, Nicolaas Koen
    Figdor, Carl
    Srinivas, Mangala
    Tagit, Oya
    ACS APPLIED BIO MATERIALS, 2019, 2 (03): : 1131 - 1140
  • [6] Forster Resonance Energy Transfer-Based Soft Nanoballs for Specific and Amplified Detection of MicroRNAs
    Cheng, Yun Ying
    Xie, Yi Fen
    Li, Chun Mei
    Li, Yuan Fang
    Huang, Cheng Zhi
    ANALYTICAL CHEMISTRY, 2019, 91 (17) : 11023 - 11029
  • [7] Visualization of Ectopic Serine Protease Activity by Forster Resonance Energy Transfer-Based Reporters
    Rickert-Zacharias, Verena
    Schultz, Madeleine
    Mall, Marcus A.
    Schultz, Carsten
    ACS CHEMICAL BIOLOGY, 2021, 16 (11) : 2174 - 2184
  • [8] Revealing Nucleic Acid Mutations Using Forster Resonance Energy Transfer-Based Probes
    Junager, Nina P. L.
    Kongsted, Jacob
    Astakhova, Kira
    SENSORS, 2016, 16 (08)
  • [9] Forster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor
    Owen, Timothy S.
    Ngoje, George
    Lageman, Travis J.
    Bordeau, Brandon M.
    Belfort, Marlene
    Callahan, Brian P.
    ANALYTICAL BIOCHEMISTRY, 2015, 488 : 1 - 5
  • [10] Two-dimensional nanomaterials for Forster resonance energy transfer-based sensing applications
    Zhou, Jie
    Chen, Jiajie
    Ge, Yanqi
    Shao, Yonghong
    NANOPHOTONICS, 2020, 9 (07) : 1855 - 1875