Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices

被引:11
|
作者
Pennisi, Andrea [1 ]
Bloisi, Domenico D. [2 ]
Suriani, Vincenzo [3 ]
Nardi, Daniele [3 ]
Facchiano, Antonio [4 ]
Giampetruzzi, Anna Rita [4 ]
机构
[1] Univ Antwerp, Dept Comp Sci, Antwerp, Belgium
[2] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
[3] Sapienza Univ Rome, Dept Comp Sci Control & Management Engn, Rome, Italy
[4] Ist Dermopat Immacolata IDI IRCCS, Rome, Italy
关键词
Melanoma detection; Image segmentation; Deep learning; NETWORKS;
D O I
10.1007/s10278-022-00634-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Melanoma is the deadliest form of skin cancer. Early diagnosis of malignant lesions is crucial for reducing mortality. The use of deep learning techniques on dermoscopic images can help in keeping track of the change over time in the appearance of the lesion, which is an important factor for detecting malignant lesions. In this paper, we present a deep learning architecture called Attention Squeeze U-Net for skin lesion area segmentation specifically designed for embedded devices. The main goal is to increase the patient empowerment through the adoption of deep learning algorithms that can run locally on smartphones or low cost embedded devices. This can be the basis to (1) create a history of the lesion, (2) reduce patient visits to the hospital, and (3) protect the privacy of the users. Quantitative results on publicly available data demonstrate that it is possible to achieve good segmentation results even with a compact model.
引用
收藏
页码:1217 / 1230
页数:14
相关论文
共 50 条
  • [41] Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss
    Garcia-Salgado, Beatriz P.
    Almaraz-Damian, Jose A.
    Cervantes-Chavarria, Oscar
    Ponomaryov, Volodymyr
    Reyes-Reyes, Rogelio
    Cruz-Ramos, Clara
    Sadovnychiy, Sergiy
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [42] Attention guided U-Net for accurate iris segmentation
    Lian, Sheng
    Luo, Zhiming
    Zhong, Zhun
    Lin, Xiang
    Su, Songzhi
    Li, Shaozi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 56 : 296 - 304
  • [43] U-Net with Attention Mechanism for Retinal Vessel Segmentation
    Si, Ze
    Fu, Dongmei
    Li, Jiahao
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 668 - 677
  • [44] Synergistic attention U-Net for sublingual vein segmentation
    Tingxiao Yang
    Yuichiro Yoshimura
    Akira Morita
    Takao Namiki
    Toshiya Nakaguchi
    Artificial Life and Robotics, 2019, 24 : 550 - 559
  • [45] Dual Encoder Attention U-net for nuclei segmentation
    Vahadane, Abhishek
    Atheeth, B.
    Majumdar, Shantanu
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3205 - 3208
  • [46] Synergistic attention U-Net for sublingual vein segmentation
    Yang, Tingxiao
    Yoshimura, Yuichiro
    Morita, Akira
    Namiki, Takao
    Nakaguchi, Toshiya
    ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (04) : 550 - 559
  • [47] A 2.5D semantic segmentation of the pancreas using attention guided dual context embedded U-Net
    Li, Jingyuan
    Liao, Guanqun
    Sun, Wenfang
    Sun, Ji
    Sheng, Tai
    Zhu, Kaibin
    von Deneen, Karen M.
    Zhang, Yi
    NEUROCOMPUTING, 2022, 480 : 14 - 26
  • [48] ACU-NET: A 3D ATTENTION CONTEXT U-NET FOR MULTIPLE SCLEROSIS LESION SEGMENTATION
    Hu, Chuan
    Kang, Guixia
    Hou, Beibei
    Ma, Yiyuan
    Labeau, Fabrice
    Su, Zichen
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1384 - 1388
  • [49] Automated segmentation of chronic stroke lesion using efficient U-Net architecture
    Shin, Hyunkwang
    Agyeman, Rockson
    Rafiq, Muhammad
    Chang, Min Cheol Chang
    Choi, Gyu Sang
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) : 285 - 294
  • [50] Geographic Atrophy Lesion Segmentation Using a Deep Learning Network (U-net)
    Patil, Jasmine
    Kawczynski, Michael
    Gao, Simon S.
    Coimbra, Alexandre Fernandez
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)