Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss

被引:0
|
作者
Garcia-Salgado, Beatriz P. [1 ]
Almaraz-Damian, Jose A. [2 ]
Cervantes-Chavarria, Oscar [1 ]
Ponomaryov, Volodymyr [1 ]
Reyes-Reyes, Rogelio [1 ]
Cruz-Ramos, Clara [1 ]
Sadovnychiy, Sergiy [3 ]
机构
[1] Inst Politecn Nacl, ESIME Culhuacan, Santa Ana 1000, Mexico City 04440, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Transferencia Tecnol Tepic, Tepic 63173, Mexico
[3] Inst Mexicano Petr, Eje Cent Lazaro Cardenas Norte 152, Mexico City 7730, Mexico
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
ischemic stroke segmentation; MRI segmentation; attention U-Net; Generalized Dice Focal loss; BRAIN; TIME;
D O I
10.3390/app14188183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ischemic stroke lesion segmentation in MRI images represents significant challenges, particularly due to class imbalance between foreground and background pixels. Several approaches have been developed to achieve higher F1-Scores in stroke lesion segmentation under this challenge. These strategies include convolutional neural networks (CNN) and models that represent a large number of parameters, which can only be trained on specialized computational architectures that are explicitly oriented to data processing. This paper proposes a lightweight model based on the U-Net architecture that handles an attention module and the Generalized Dice Focal loss function to enhance the segmentation accuracy in the class imbalance environment, characteristic of stroke lesions in MRI images. This study also analyzes the segmentation performance according to the pixel size of stroke lesions, giving insights into the loss function behavior using the public ISLES 2015 and ISLES 2022 MRI datasets. The proposed model can effectively segment small stroke lesions with F1-Scores over 0.7, particularly in FLAIR, DWI, and T2 sequences. Furthermore, the model shows reasonable convergence with their 7.9 million parameters at 200 epochs, making it suitable for practical implementation on mid and high-end general-purpose graphic processing units.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] U-ISLES: Ischemic Stroke Lesion Segmentation Using U-Net
    Cornelio, Lea Katrina S.
    del Castillo, Mary Abigail, V
    Naval, Prospero C., Jr.
    INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 326 - 336
  • [2] Automated Segmentation of Acute Ischemic Stroke Using Attention U-Net with Patch Mechanism
    Cinar, Necip
    Ucan, Murat
    Kaya, Buket
    Kaya, Mehmet
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2025, 25 (01) : 29 - 42
  • [3] Dual-Path Attention Compensation U-Net for Stroke Lesion Segmentation
    Hui, Haisheng
    Zhang, Xueying
    Wu, Zelin
    Li, Fenlian
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [4] Strided U-Net Model: Retinal Vessels Segmentation Using Dice Loss
    Soomro, Toufique A.
    Afifi, Ahmed J.
    Gao, Junbin
    Hellwich, Olaf
    Paul, Manoranjan
    Zheng, Lihong
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 76 - 83
  • [5] Multiscale Attention U-Net for Skin Lesion Segmentation
    Alahmadi, Mohammad D.
    IEEE ACCESS, 2022, 10 : 59145 - 59154
  • [6] Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model
    Bousselham, Abdelmajid
    Bouattane, Omar
    Youssfi, Mohamed
    Raihani, Abdelhadi
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2022, 2022
  • [7] MRI Brain Tumour Segmentation Using Multiscale Attention U-Net
    Chen, Bonian
    He, Tao
    Wang, Weizhuo
    Han, Yutong
    Zhang, Jianxin
    Bobek, Samo
    Zabukovsek, Simona Sternad
    INFORMATICA, 2024, 35 (04) : 751 - 774
  • [8] V-Net and U-Net for Ischemic Stroke Lesion Segmentation in a Small Dataset of Perfusion Data
    Pinheiro, Gustavo Retuci
    Voltoline, Raphael
    Bento, Mariana
    Rittner, Leticia
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 301 - 309
  • [9] A NOVEL FOCAL TVERSKY LOSS FUNCTION WITH IMPROVED ATTENTION U -NET FOR LESION SEGMENTATION
    Abraham, Nabila
    Khan, Naimul Mefraz
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 683 - 687
  • [10] Efficient U-Net CNN with data augmentation for MRI ischemic stroke brain segmentation
    Aboudi, Fathia
    Drissi, Cyrine
    Kraiem, Tarek
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 724 - 728