Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss

被引:0
|
作者
Garcia-Salgado, Beatriz P. [1 ]
Almaraz-Damian, Jose A. [2 ]
Cervantes-Chavarria, Oscar [1 ]
Ponomaryov, Volodymyr [1 ]
Reyes-Reyes, Rogelio [1 ]
Cruz-Ramos, Clara [1 ]
Sadovnychiy, Sergiy [3 ]
机构
[1] Inst Politecn Nacl, ESIME Culhuacan, Santa Ana 1000, Mexico City 04440, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Transferencia Tecnol Tepic, Tepic 63173, Mexico
[3] Inst Mexicano Petr, Eje Cent Lazaro Cardenas Norte 152, Mexico City 7730, Mexico
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
ischemic stroke segmentation; MRI segmentation; attention U-Net; Generalized Dice Focal loss; BRAIN; TIME;
D O I
10.3390/app14188183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ischemic stroke lesion segmentation in MRI images represents significant challenges, particularly due to class imbalance between foreground and background pixels. Several approaches have been developed to achieve higher F1-Scores in stroke lesion segmentation under this challenge. These strategies include convolutional neural networks (CNN) and models that represent a large number of parameters, which can only be trained on specialized computational architectures that are explicitly oriented to data processing. This paper proposes a lightweight model based on the U-Net architecture that handles an attention module and the Generalized Dice Focal loss function to enhance the segmentation accuracy in the class imbalance environment, characteristic of stroke lesions in MRI images. This study also analyzes the segmentation performance according to the pixel size of stroke lesions, giving insights into the loss function behavior using the public ISLES 2015 and ISLES 2022 MRI datasets. The proposed model can effectively segment small stroke lesions with F1-Scores over 0.7, particularly in FLAIR, DWI, and T2 sequences. Furthermore, the model shows reasonable convergence with their 7.9 million parameters at 200 epochs, making it suitable for practical implementation on mid and high-end general-purpose graphic processing units.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Segmentation of Mammogram Images Using U-Net with Fusion of Channel and Spatial Attention Modules (U-Net CASAM)
    Robert Singh, A.
    Vidya, S.
    Hariharasitaraman, S.
    Athisayamani, Suganya
    Hsu, Fang Rong
    Lecture Notes in Networks and Systems, 2024, 966 LNNS : 435 - 448
  • [42] DARU-Net: A dual attention residual U-Net for uterine fibroids segmentation on MRI
    Zhang, Jian
    Liu, Yang
    Chen, Liping
    Ma, Si
    Zhong, Yuqing
    He, Zhimin
    Li, Chengwei
    Xiao, Zhibo
    Zheng, Yineng
    Lv, Fajin
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (06):
  • [43] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Ali Alijamaat
    Alireza NikravanShalmani
    Peyman Bayat
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1459 - 1467
  • [44] A New Hybrid Model for Segmentation of the Skin Lesion Based on Residual Attention U-Net
    Almuayqil, Saleh Naif
    Arnous, Reham
    Sakr, Noha
    Fadel, Magdy M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5177 - 5192
  • [45] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Alijamaat, Ali
    NikravanShalmani, Alireza
    Bayat, Peyman
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) : 1459 - 1467
  • [46] EnigmaNet: A Novel Attention-Enhanced Segmentation Framework for Ischemic Stroke Lesion Detection in Brain MRI
    Sinha, Shambhavi
    Bhatt, Manan
    Anand, Anubhav
    Areeckal, Anu Shaju
    Aparna, V
    IEEE ACCESS, 2024, 12 : 91480 - 91498
  • [47] Ischemic Stroke Lesion Segmentation in CT Perfusion Scans Using Pyramid Pooling and Focal Loss
    Abulnaga, S. Mazdak
    Rubin, Jonathan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 352 - 363
  • [48] Semantic Segmentation of Brain MRI Based on U-net Network and Edge Loss
    Wang, Zude
    Zhang, Leixin
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 154 - 157
  • [49] Modified U-Net with attention gate for enhanced automated brain tumor segmentation
    Shoffan Saifullah
    Rafał Dreżewski
    Anton Yudhana
    Maciej Wielgosz
    Wahyu Caesarendra
    Neural Computing and Applications, 2025, 37 (7) : 5521 - 5558
  • [50] Attention-enhanced U-Net based network for cancerous tissue segmentation
    Wang, Yuchen
    Ma, Kainan
    Li, Yang
    Cao, Limin
    Wang, Zhaoyuxuan
    Zhou, Yiheng
    Sun, Qian
    You, Chaoxing
    Xia, Shuang
    Liu, Ming
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 106