Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss

被引:0
|
作者
Garcia-Salgado, Beatriz P. [1 ]
Almaraz-Damian, Jose A. [2 ]
Cervantes-Chavarria, Oscar [1 ]
Ponomaryov, Volodymyr [1 ]
Reyes-Reyes, Rogelio [1 ]
Cruz-Ramos, Clara [1 ]
Sadovnychiy, Sergiy [3 ]
机构
[1] Inst Politecn Nacl, ESIME Culhuacan, Santa Ana 1000, Mexico City 04440, Mexico
[2] Ctr Invest Cient & Educ Super Ensenada, Unidad Transferencia Tecnol Tepic, Tepic 63173, Mexico
[3] Inst Mexicano Petr, Eje Cent Lazaro Cardenas Norte 152, Mexico City 7730, Mexico
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
关键词
ischemic stroke segmentation; MRI segmentation; attention U-Net; Generalized Dice Focal loss; BRAIN; TIME;
D O I
10.3390/app14188183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ischemic stroke lesion segmentation in MRI images represents significant challenges, particularly due to class imbalance between foreground and background pixels. Several approaches have been developed to achieve higher F1-Scores in stroke lesion segmentation under this challenge. These strategies include convolutional neural networks (CNN) and models that represent a large number of parameters, which can only be trained on specialized computational architectures that are explicitly oriented to data processing. This paper proposes a lightweight model based on the U-Net architecture that handles an attention module and the Generalized Dice Focal loss function to enhance the segmentation accuracy in the class imbalance environment, characteristic of stroke lesions in MRI images. This study also analyzes the segmentation performance according to the pixel size of stroke lesions, giving insights into the loss function behavior using the public ISLES 2015 and ISLES 2022 MRI datasets. The proposed model can effectively segment small stroke lesions with F1-Scores over 0.7, particularly in FLAIR, DWI, and T2 sequences. Furthermore, the model shows reasonable convergence with their 7.9 million parameters at 200 epochs, making it suitable for practical implementation on mid and high-end general-purpose graphic processing units.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] A U-Net Ensemble for breast lesion segmentation in DCE MRI
    Khaled, Roa'a
    Vidal, Joel
    Vilanova, Joan C.
    Marti, Robert
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [12] Automated segmentation of chronic stroke lesion using efficient U-Net architecture
    Shin, Hyunkwang
    Agyeman, Rockson
    Rafiq, Muhammad
    Chang, Min Cheol Chang
    Choi, Gyu Sang
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) : 285 - 294
  • [13] The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
    Li, Ya-Hui
    Lin, Shao-Chieh
    Chung, Hsiao-Wen
    Chang, Chia-Ching
    Peng, Hsu-Hsia
    Huang, Teng-Yi
    Shen, Wu-Chung
    Tsai, Chon-Haw
    Lo, Yu-Chien
    Lee, Tung-Yang
    Juan, Cheng-Hsuan
    Juan, Cheng-En
    Chang, Hing-Chiu
    Liu, Yi-Jui
    Juan, Chun-Jung
    EUROPEAN RADIOLOGY, 2023, 33 (09) : 6157 - 6167
  • [14] The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
    Ya-Hui Li
    Shao-Chieh Lin
    Hsiao-Wen Chung
    Chia-Ching Chang
    Hsu-Hsia Peng
    Teng-Yi Huang
    Wu-Chung Shen
    Chon-Haw Tsai
    Yu-Chien Lo
    Tung-Yang Lee
    Cheng-Hsuan Juan
    Cheng-En Juan
    Hing-Chiu Chang
    Yi-Jui Liu
    Chun-Jung Juan
    European Radiology, 2023, 33 : 6157 - 6167
  • [15] SEGMENTING HEPATIC LESIONS USING RESIDUAL ATTENTION U-NET WITH AN ADAPTIVE WEIGHTED DICE LOSS
    Liu, Yu-Cheng
    Tan, Daniel Stanley
    Chen, Jyh-Cheng
    Cheng, Wen-Huang
    Hua, Kai-Lung
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3322 - 3326
  • [16] Accurate segmentation of bladder wall and tumor regions in MRI using stacked dilated U-Net with focal loss
    Pan, Hong
    Li, Ziqiang
    Cai, Runqiu
    Zhu, Yaping
    MIPPR 2019: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION TECHNIQUES; AND MEDICAL IMAGING, 2020, 11431
  • [17] Skin Lesion Segmentation using Residual U-NET
    Manivannan, S.
    Venkateswaran, N.
    Proceedings of the 10th International Conference on Signal Processing and Integrated Networks, SPIN 2023, 2023, : 405 - 409
  • [18] Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
    Pennisi, Andrea
    Bloisi, Domenico D.
    Suriani, Vincenzo
    Nardi, Daniele
    Facchiano, Antonio
    Giampetruzzi, Anna Rita
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (05) : 1217 - 1230
  • [19] Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices
    Andrea Pennisi
    Domenico D. Bloisi
    Vincenzo Suriani
    Daniele Nardi
    Antonio Facchiano
    Anna Rita Giampetruzzi
    Journal of Digital Imaging, 2022, 35 : 1217 - 1230
  • [20] Dense and shuffle attention U-Net for automatic skin lesion segmentation
    Zhang, Guanzhong
    Wang, Shengsheng
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (06) : 2066 - 2079