The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net

被引:1
|
作者
Li, Ya-Hui [1 ,2 ]
Lin, Shao-Chieh [2 ,3 ]
Chung, Hsiao-Wen [1 ,4 ]
Chang, Chia-Ching [2 ,5 ]
Peng, Hsu-Hsia [6 ]
Huang, Teng-Yi [7 ]
Shen, Wu-Chung [8 ,9 ]
Tsai, Chon-Haw [10 ]
Lo, Yu-Chien [9 ]
Lee, Tung-Yang [11 ,12 ]
Juan, Cheng-Hsuan [11 ,12 ]
Juan, Cheng-En [12 ]
Chang, Hing-Chiu [14 ,15 ]
Liu, Yi-Jui [13 ]
Juan, Chun-Jung [2 ,6 ,8 ,9 ,16 ,17 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
[2] China Med Univ, Hsinchu Hosp, Dept Med Imaging, 199,Sec 1,Xinglong Rd, Zhubei 302, Hsinchu, Taiwan
[3] Feng Chia Univ, Ph D Program Elect & Commun Engn, Taichung, Taiwan
[4] Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
[5] Natl Yang Ming Chiao Tung Univ, Dept Management Sci, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[8] China Med Univ, Sch Med, Coll Med, Dept Radiol, Taichung, Taiwan
[9] Med Univ Hosp, Dept Med Imaging, Taichung, Taiwan
[10] China Med Univ Hosp, Dept Neurol, Taichung, Taiwan
[11] Cheng Ching Hosp, Taichung, Taiwan
[12] Feng Chia Univ, Masters Program Biomed Informat & Biomed Engn, Taichung, Taiwan
[13] Feng Chia Univ, Dept Automat Control Engn, 100 Wenhwa Rd, Taichung 40724, Taiwan
[14] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, ERB1112,11-F,William MW Mong Engn Bldg, Hong Kong, Peoples R China
[15] Chinese Univ Hong Kong, Multiscale Med Robot Ctr, Shatin, Hong Kong, Peoples R China
[16] Natl Def Med Ctr, Dept Biomed Engn, Taipei, Taiwan
[17] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan
关键词
Ischemic Stroke; Diffusion Magnetic Resonance Imaging; Retrospective Study; Deep Learning; Neural Networks; Computer; DIFFUSION; DEEP; DIAGNOSIS; ARTIFACTS; IMAGES; VOLUME;
D O I
10.1007/s00330-023-09622-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundTo evaluate the effect of the weighting of input imaging combo and ADC threshold on the performance of the U-Net and to find an optimized input imaging combo and ADC threshold in segmenting acute ischemic stroke (AIS) lesion.MethodsThis study retrospectively enrolled a total of 212 patients having AIS. Four combos, including ADC-ADC-ADC (AAA), DWI-ADC-ADC (DAA), DWI-DWI-ADC (DDA), and DWI-DWI-DWI (DDD), were used as input images, respectively. Three ADC thresholds including 0.6, 0.8 and 1.8 x 10(-3) mm(2)/s were applied. Dice similarity coefficient (DSC) was used to evaluate the segmentation performance of U-Nets. Nonparametric Kruskal-Wallis test with Tukey-Kramer post-hoc tests were used for comparison. A p < .05 was considered statistically significant.ResultsThe DSC significantly varied among different combos of images and different ADC thresholds. Hybrid U-Nets outperformed uniform U-Nets at ADC thresholds of 0.6 x 10(-3) mm(2)/s and 0.8 x 10(-3) mm(2)/s (p < .001). The U-Net with imaging combo of DDD had segmentation performance similar to hybrid U-Nets at an ADC threshold of 1.8 x 10(-3) mm(2)/s (p = .062 to 1). The U-Net using the imaging combo of DAA at the ADC threshold of 0.6 x 10(-3) mm(2)/s achieved the highest DSC in the segmentation of AIS lesion.ConclusionsThe segmentation performance of U-Net for AIS varies among the input imaging combos and ADC thresholds. The U-Net is optimized by choosing the imaging combo of DAA at an ADC threshold of 0.6 x 10(-3) mm(2)/s in segmentating AIS lesion with highest DSC.
引用
收藏
页码:6157 / 6167
页数:11
相关论文
共 50 条
  • [1] The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
    Ya-Hui Li
    Shao-Chieh Lin
    Hsiao-Wen Chung
    Chia-Ching Chang
    Hsu-Hsia Peng
    Teng-Yi Huang
    Wu-Chung Shen
    Chon-Haw Tsai
    Yu-Chien Lo
    Tung-Yang Lee
    Cheng-Hsuan Juan
    Cheng-En Juan
    Hing-Chiu Chang
    Yi-Jui Liu
    Chun-Jung Juan
    European Radiology, 2023, 33 : 6157 - 6167
  • [2] U-ISLES: Ischemic Stroke Lesion Segmentation Using U-Net
    Cornelio, Lea Katrina S.
    del Castillo, Mary Abigail, V
    Naval, Prospero C., Jr.
    INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 326 - 336
  • [3] A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images
    Kumar, Amish
    Ghosal, Palash
    Kundu, Soumya Snigdha
    Mukherjee, Amritendu
    Nandi, Debashis
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [4] Automated Segmentation of Acute Ischemic Stroke Using Attention U-Net with Patch Mechanism
    Cinar, Necip
    Ucan, Murat
    Kaya, Buket
    Kaya, Mehmet
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2025, 25 (01) : 29 - 42
  • [5] Evaluation of U-net segmentation models for infarct volume measurement in acute ischemic stroke: comparison with fixed ADC threshold-based methods
    Kim, Yoon-Chul
    Lee, Ji-Eun
    Yu, Inwu
    Baek, In-Young
    Jeong, Han-Gil
    Kim, Beom-Joon
    Seong, Joon-Kyung
    Chung, Jong-Won
    Bang, Oh Young
    Seo, Woo-Keun
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [6] Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model
    Bousselham, Abdelmajid
    Bouattane, Omar
    Youssfi, Mohamed
    Raihani, Abdelhadi
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2022, 2022
  • [7] V-Net and U-Net for Ischemic Stroke Lesion Segmentation in a Small Dataset of Perfusion Data
    Pinheiro, Gustavo Retuci
    Voltoline, Raphael
    Bento, Mariana
    Rittner, Leticia
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 301 - 309
  • [8] Automated segmentation of chronic stroke lesion using efficient U-Net architecture
    Shin, Hyunkwang
    Agyeman, Rockson
    Rafiq, Muhammad
    Chang, Min Cheol Chang
    Choi, Gyu Sang
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) : 285 - 294
  • [9] Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss
    Garcia-Salgado, Beatriz P.
    Almaraz-Damian, Jose A.
    Cervantes-Chavarria, Oscar
    Ponomaryov, Volodymyr
    Reyes-Reyes, Rogelio
    Cruz-Ramos, Clara
    Sadovnychiy, Sergiy
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [10] Skin Lesion Segmentation using Residual U-NET
    Manivannan, S.
    Venkateswaran, N.
    Proceedings of the 10th International Conference on Signal Processing and Integrated Networks, SPIN 2023, 2023, : 405 - 409