Towards an Accurate MRI Acute Ischemic Stroke Lesion Segmentation Based on Bioheat Equation and U-Net Model

被引:3
|
作者
Bousselham, Abdelmajid [1 ]
Bouattane, Omar [1 ]
Youssfi, Mohamed [1 ]
Raihani, Abdelhadi [1 ]
机构
[1] Univ Hassan 2 Casablanca, Lab SSDIA, ENSET Mohammedia, Casablanca, Morocco
关键词
HEAT-TRANSFER; PARAMETER-ESTIMATION; TISSUE; TEMPERATURE; TUMOR; LOCATION;
D O I
10.1155/2022/5529726
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Acute ischemic stroke represents a cerebrovascular disease, for which it is practical, albeit challenging to segment and differentiate infarct core from salvageable penumbra brain tissue. Ischemic stroke causes the variation of cerebral blood flow and heat generation due to metabolism. Therefore, the temperature is modified in the ischemic stroke region. In this paper, we incorporate acute ischemic stroke temperature profile to reinforce segmentation accuracy in MRI. Pennes bioheat equation was used to generate brain thermal images that may provide rich information regarding the temperature change in acute ischemic stroke lesions. The thermal images were generated by calculating the temperature of the brain with acute ischemic stroke. Then, U-Net was used in this paper for the segmentation of acute ischemic stroke. A dataset of 3192 images was created to train U-Net using k-fold crossvalidation. The training time was about 10 hours and 35 minutes in NVIDIA GPU. Next, the obtained trained model was compared with recent methods to analyze the effect of the ischemic stroke temperature profile in segmentation. The obtained results show that significant parts of acute ischemic stroke and background areas are segmented only in thermal images, which proves the importance of using thermal information to improve the segmentation outcomes in MRI diagnosis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] U-ISLES: Ischemic Stroke Lesion Segmentation Using U-Net
    Cornelio, Lea Katrina S.
    del Castillo, Mary Abigail, V
    Naval, Prospero C., Jr.
    INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 326 - 336
  • [2] A lightweight asymmetric U-Net framework for acute ischemic stroke lesion segmentation in CT and CTP images
    Kumar, Amish
    Ghosal, Palash
    Kundu, Soumya Snigdha
    Mukherjee, Amritendu
    Nandi, Debashis
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [3] Enhanced Ischemic Stroke Lesion Segmentation in MRI Using Attention U-Net with Generalized Dice Focal Loss
    Garcia-Salgado, Beatriz P.
    Almaraz-Damian, Jose A.
    Cervantes-Chavarria, Oscar
    Ponomaryov, Volodymyr
    Reyes-Reyes, Rogelio
    Cruz-Ramos, Clara
    Sadovnychiy, Sergiy
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [4] The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
    Li, Ya-Hui
    Lin, Shao-Chieh
    Chung, Hsiao-Wen
    Chang, Chia-Ching
    Peng, Hsu-Hsia
    Huang, Teng-Yi
    Shen, Wu-Chung
    Tsai, Chon-Haw
    Lo, Yu-Chien
    Lee, Tung-Yang
    Juan, Cheng-Hsuan
    Juan, Cheng-En
    Chang, Hing-Chiu
    Liu, Yi-Jui
    Juan, Chun-Jung
    EUROPEAN RADIOLOGY, 2023, 33 (09) : 6157 - 6167
  • [5] The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net
    Ya-Hui Li
    Shao-Chieh Lin
    Hsiao-Wen Chung
    Chia-Ching Chang
    Hsu-Hsia Peng
    Teng-Yi Huang
    Wu-Chung Shen
    Chon-Haw Tsai
    Yu-Chien Lo
    Tung-Yang Lee
    Cheng-Hsuan Juan
    Cheng-En Juan
    Hing-Chiu Chang
    Yi-Jui Liu
    Chun-Jung Juan
    European Radiology, 2023, 33 : 6157 - 6167
  • [6] V-Net and U-Net for Ischemic Stroke Lesion Segmentation in a Small Dataset of Perfusion Data
    Pinheiro, Gustavo Retuci
    Voltoline, Raphael
    Bento, Mariana
    Rittner, Leticia
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 301 - 309
  • [7] Efficient U-Net CNN with data augmentation for MRI ischemic stroke brain segmentation
    Aboudi, Fathia
    Drissi, Cyrine
    Kraiem, Tarek
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 724 - 728
  • [8] A U-Net Ensemble for breast lesion segmentation in DCE MRI
    Khaled, Roa'a
    Vidal, Joel
    Vilanova, Joan C.
    Marti, Robert
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [9] Towards improved U-Net for efficient skin lesion segmentation
    Nampalle, Kishore Babu
    Pundhir, Anshul
    Jupudi, Pushpamanjari Ramesh
    Raman, Balasubramanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71665 - 71682
  • [10] Automated Segmentation of Acute Ischemic Stroke Using Attention U-Net with Patch Mechanism
    Cinar, Necip
    Ucan, Murat
    Kaya, Buket
    Kaya, Mehmet
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2025, 25 (01) : 29 - 42