Skin Lesion Area Segmentation Using Attention Squeeze U-Net for Embedded Devices

被引:11
|
作者
Pennisi, Andrea [1 ]
Bloisi, Domenico D. [2 ]
Suriani, Vincenzo [3 ]
Nardi, Daniele [3 ]
Facchiano, Antonio [4 ]
Giampetruzzi, Anna Rita [4 ]
机构
[1] Univ Antwerp, Dept Comp Sci, Antwerp, Belgium
[2] Univ Basilicata, Dept Math Comp Sci & Econ, Potenza, Italy
[3] Sapienza Univ Rome, Dept Comp Sci Control & Management Engn, Rome, Italy
[4] Ist Dermopat Immacolata IDI IRCCS, Rome, Italy
关键词
Melanoma detection; Image segmentation; Deep learning; NETWORKS;
D O I
10.1007/s10278-022-00634-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Melanoma is the deadliest form of skin cancer. Early diagnosis of malignant lesions is crucial for reducing mortality. The use of deep learning techniques on dermoscopic images can help in keeping track of the change over time in the appearance of the lesion, which is an important factor for detecting malignant lesions. In this paper, we present a deep learning architecture called Attention Squeeze U-Net for skin lesion area segmentation specifically designed for embedded devices. The main goal is to increase the patient empowerment through the adoption of deep learning algorithms that can run locally on smartphones or low cost embedded devices. This can be the basis to (1) create a history of the lesion, (2) reduce patient visits to the hospital, and (3) protect the privacy of the users. Quantitative results on publicly available data demonstrate that it is possible to achieve good segmentation results even with a compact model.
引用
收藏
页码:1217 / 1230
页数:14
相关论文
共 50 条
  • [31] DEU-Net: Dual-Encoder U-Net for Automated Skin Lesion Segmentation
    Karimi, Ali
    Faez, Karim
    Nazari, Soheila
    IEEE ACCESS, 2023, 11 : 134804 - 134821
  • [32] Segmentation of Mammogram Images Using U-Net with Fusion of Channel and Spatial Attention Modules (U-Net CASAM)
    Robert Singh, A.
    Vidya, S.
    Hariharasitaraman, S.
    Athisayamani, Suganya
    Hsu, Fang Rong
    Lecture Notes in Networks and Systems, 2024, 966 LNNS : 435 - 448
  • [33] LIGHTWEIGHT U-NET FOR LESION SEGMENTATION IN ULTRASOUND IMAGES
    Li, Yingping
    Chouzenoux, Emilie
    Charmettant, Benoit
    Benatsou, Baya
    Lamarque, Jean-Philippe
    Lassau, Nathalie
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 611 - 615
  • [34] MRI Brain Tumour Segmentation Using Multiscale Attention U-Net
    Chen, Bonian
    He, Tao
    Wang, Weizhuo
    Han, Yutong
    Zhang, Jianxin
    Bobek, Samo
    Zabukovsek, Simona Sternad
    INFORMATICA, 2024, 35 (04) : 751 - 774
  • [35] Improved U-Net: Fully Convolutional Network Model for Skin-Lesion Segmentation
    Sanjar, Karshiev
    Bekhzod, Olimov
    Kim, Jaeil
    Kim, Jaesoo
    Paul, Anand
    Kim, Jeonghong
    APPLIED SCIENCES-BASEL, 2020, 10 (10):
  • [36] Using the wide-range attention U-Net for road segmentation
    Yuan, Man
    Liu, Zhi
    Wang, Fan
    REMOTE SENSING LETTERS, 2019, 10 (05) : 506 - 515
  • [37] Semantic Segmentation of Tumors in Kidneys using Attention U-Net Models
    Geethanjali, T. M.
    Minavathi
    Dinesh, M. S.
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 286 - 290
  • [38] Attention U-Net for Glaucoma Identification Using Fundus Image Segmentation
    Shyamalee, Thisara
    Meedeniya, Dulani
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 6 - 10
  • [39] Segmentation of the Thoracic Aorta using an Attention-Gated U-Net
    Zhong, Jiayang
    Bian, Zhangxing
    Hatt, Charles R.
    Burris, Nicholas S.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [40] ETU-Net: edge enhancement-guided U-Net with transformer for skin lesion segmentation
    Chen, Lifang
    Li, Jiawei
    Zou, Yunmin
    Wang, Tao
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (01):