Systems identification using type-2 fuzzy neural network (Type-2 FNN) systems

被引:0
|
作者
Lee, CH [1 ]
Lin, YC [1 ]
Lai, WY [1 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Taoyuan 320, Taiwan
关键词
fuzzy neural network; type-2 fuzzy sets; back-propagation algorithm;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a type-2 fuzzy neural network system (type-2 FNN) and its learning algorithm using back-propagation algorithm. In our previous results, the FNN system using type-1 fuzzy logic systems (FLSs) is called type-1 FNN system. It has the properties of parallel computation scheme, easy to implement, fuzzy logic inference system, and parameters convergence. For considering the fuzzy rules uncertainties, we use the type-2 FLSs to develop a type-2 FNN system. The type-2 fuzzy sets let us model and minimize the effects of uncertainties in rule-base fuzzy logic systems (FLSs). In this paper, the previous results of type-1 FNN are extended to a type-2 one. In addition, the corresponding learning algorithm is derived by back-program algorithm. Several examples are presented to illustrate the effectiveness of our approach.
引用
收藏
页码:1264 / 1269
页数:6
相关论文
共 50 条
  • [41] Adaptive Type-2 Fuzzy Neural-Network Control for Teleoperation Systems With Delay and Uncertainties
    Kebria, Parham Mohsenzadeh
    Khosravi, Abbas
    Nahavandi, Saeid
    Wu, Dongrui
    Bello, Fernando
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (10) : 2543 - 2554
  • [42] Design and application of interval type-2 fuzzy neural network systems optimized with hybrid algorithms
    Chen, Yang
    Information Sciences, 2025, 689
  • [43] Analysis of the Noise Reduction Property of Type-2 Fuzzy Logic Systems Using a Novel Type-2 Membership Function
    Khanesar, Mojtaba Ahmadieh
    Kayacan, Erdal
    Teshnehlab, Mohammad
    Kaynak, Okyay
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (05): : 1395 - 1406
  • [44] A New Neural Network-based Type Reduction Algorithm for Interval Type-2 Fuzzy Logic Systems
    Khosravi, Abbas
    Nahavandi, Saeid
    Khosravi, Rihanna
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [45] Forecasting consumer price index based on interval type-2 fuzzy neural network systems
    Wang, Tao
    Lan, Jie
    Qi, Tiantian
    Guo, Xiaolei
    ICIC Express Letters, Part B: Applications, 2015, 6 (10): : 2897 - 2904
  • [46] Energy optimization of internet of things in wireless sensor network models using type-2 fuzzy neural systems
    Rasi, Durairajan
    Deepa, Subramaniam Nachimuthu
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (17)
  • [47] On the Monotonicity of Interval Type-2 Fuzzy Logic Systems
    Li, Chengdong
    Yi, Jianqiang
    Zhang, Guiqing
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (05) : 1197 - 1212
  • [48] Interpolation functions of interval type-2 fuzzy systems
    Zhao, Shan
    Li, Zhao
    Zhao, Shan (shanzhao9505@163.com), 1600, IOS Press BV (41): : 3183 - 3200
  • [49] Toolbox for Interval Type-2 Fuzzy Logic Systems
    Zamani, Mohsen
    Nejati, Hossein
    Jahromi, Amin T.
    Partovi, Ali Reza
    Nobari, Sadegh H.
    Shirazi, Ghasem N.
    PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2008,
  • [50] Simplified Interval Type-2 Fuzzy Logic Systems
    Mendel, Jerry M.
    Liu, Xinwang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (06) : 1056 - 1069