Canonical Quantization of Higher-Order Lagrangians

被引:3
|
作者
Nawafleh, Khaled I. [1 ]
机构
[1] Mutah Univ, Dept Phys, Al Karak 61710, Jordan
关键词
CONSTRAINED SYSTEMS; SINGULAR SYSTEMS; 2ND-ORDER LAGRANGIANS;
D O I
10.1155/2011/375838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After reducing a system of higher-order regular Lagrangian into first-order singular Lagrangian using constrained auxiliary description, the Hamilton-Jacobi function is constructed. Besides, the quantization of the system is investigated using the canonical path integral approximation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Higher-order ? corrections in the semiclassical quantization of chaotic billiards
    K. Weibert
    J. Main
    G. Wunner
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2002, 19 : 379 - 388
  • [42] CONNECTIONS ON TANGENT-BUNDLES OF HIGHER-ORDER ASSOCIATED TO REGULAR LAGRANGIANS
    DEANDRES, LC
    DELEON, M
    RODRIGUES, PR
    GEOMETRIAE DEDICATA, 1991, 39 (01) : 17 - 28
  • [43] From inflationary core potentials to higher-order curvature scalar Lagrangians
    Benitez, J
    Macias, A
    Mielke, EW
    Obregon, O
    Villanueva, VM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (16): : 2835 - 2854
  • [44] Higher-Order Regularized Kernel Canonical Correlation Analysis
    Alam, Md. Ashad
    Fukumizu, Kenji
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (04)
  • [46] Canonical higher-order kernels for density derivative estimation
    Henderson, Daniel J.
    Parmeter, Christopher F.
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) : 1383 - 1387
  • [47] CANONICAL QUANTIZATION OF SOME DISSIPATIVE SYSTEMS AND NONUNIQUENESS OF LAGRANGIANS
    OKUBO, S
    PHYSICAL REVIEW A, 1981, 23 (06): : 2776 - 2784
  • [48] A NOTE ON THE CANONICAL QUANTIZATION FOR ACCELERATION-DEPENDENT LAGRANGIANS
    COGNOLA, G
    VANZO, L
    ZERBINI, S
    LETTERE AL NUOVO CIMENTO, 1983, 38 (16): : 533 - 538
  • [49] HIGHER ORDER SPINOR LAGRANGIANS
    KIBBLE, TWB
    POLKINGHORNE, JC
    NUOVO CIMENTO, 1958, 8 (01): : 74 - 83
  • [50] Polymer quantization, stability and higher-order time derivative terms
    Cumsille, Patricio
    Reyes, Carlos M.
    Ossandon, Sebastian
    Reyes, Camilo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (09):