Canonical Quantization of Higher-Order Lagrangians

被引:3
|
作者
Nawafleh, Khaled I. [1 ]
机构
[1] Mutah Univ, Dept Phys, Al Karak 61710, Jordan
关键词
CONSTRAINED SYSTEMS; SINGULAR SYSTEMS; 2ND-ORDER LAGRANGIANS;
D O I
10.1155/2011/375838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After reducing a system of higher-order regular Lagrangian into first-order singular Lagrangian using constrained auxiliary description, the Hamilton-Jacobi function is constructed. Besides, the quantization of the system is investigated using the canonical path integral approximation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Recursive marginal quantization of higher-order schemes
    McWalter, T. A.
    Rudd, R.
    Kienitz, J.
    Platen, E.
    QUANTITATIVE FINANCE, 2018, 18 (04) : 693 - 706
  • [32] EQUIVALENCE OF HIGHER-ORDER LAGRANGIANS .1. FORMULATION AND REDUCTION
    KAMRAN, N
    OLVER, PJ
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1991, 70 (03): : 369 - 391
  • [33] Hilbert series and higher-order Lagrangians for the O(N) model
    Johan Bijnens
    Sven Bjarke Gudnason
    Jiahui Yu
    Tiantian Zhang
    Journal of High Energy Physics, 2023
  • [34] THE TIME-EVOLUTION OPERATOR FOR HIGHER-ORDER SINGULAR LAGRANGIANS
    CARINENA, JF
    LOPEZ, C
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (11): : 2447 - 2468
  • [35] Hilbert series and higher-order Lagrangians for the O(N) model
    Bijnens, Johan
    Gudnason, Sven Bjarke
    Yu, Jiahui
    Zhang, Tiantian
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [37] Non-Standard Lagrangians with Higher-Order Derivatives and the Hamiltonian Formalism
    Rami Ahmad El-Nabulsi
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 247 - 252
  • [39] DIRAC QUANTIZATION OF HIGHER-ORDER SYSTEMS WITH ODD VARIABLES
    CAMPOS, RD
    CANADIAN JOURNAL OF PHYSICS, 1992, 70 (2-3) : 148 - 151
  • [40] Higher-order differential operators on a Lie group and quantization
    Aldaya, V
    Guerrero, J
    Marmo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 3 - 11