Canonical Quantization of Higher-Order Lagrangians

被引:3
|
作者
Nawafleh, Khaled I. [1 ]
机构
[1] Mutah Univ, Dept Phys, Al Karak 61710, Jordan
关键词
CONSTRAINED SYSTEMS; SINGULAR SYSTEMS; 2ND-ORDER LAGRANGIANS;
D O I
10.1155/2011/375838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After reducing a system of higher-order regular Lagrangian into first-order singular Lagrangian using constrained auxiliary description, the Hamilton-Jacobi function is constructed. Besides, the quantization of the system is investigated using the canonical path integral approximation.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] ON A WEYL-TYPE THEOREM FOR HIGHER-ORDER LAGRANGIANS
    CASTAGNINO, M
    DOMENECH, G
    NORIEGA, RJ
    SCHIFINI, CG
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (08) : 1854 - 1857
  • [22] Investigation of constrained systems with singular higher-order Lagrangians
    Muslih, SI
    El-Zalan, HA
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (06) : 461 - 471
  • [23] Higher-order gauge invariant Lagrangians on T*M
    Masque, JM
    Coronado, LMP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23): : 7757 - 7767
  • [24] Trajectories induced on the sphere by Lagrangians with higher-order derivatives
    Orlov, YN
    Suslin, VM
    DIFFERENTIAL EQUATIONS, 1999, 35 (12) : 1649 - 1654
  • [25] HIGHER-ORDER PERTURBATION-THEORY OF EXPONENTIAL LAGRANGIANS - FOURTH ORDER
    POHLMEYER, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) : 321 - 346
  • [26] TREATMENT OF HIGHER-ORDER LAGRANGIANS VIA THE CONSTRUCTION OF DYNAMICALLY EQUIVALENT 1ST-ORDER LAGRANGIANS
    HEBDA, PW
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (09) : 2116 - 2125
  • [27] Classification of generalised higher-order Einstein-Maxwell Lagrangians
    Colleaux, Aimeric
    Langlois, David
    Noui, Karim
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [28] QUANTIZATION OF A HIGHER-ORDER DERIVATIVE SPINNING PARTICLE
    GOMIS, J
    PARIS, J
    ROCA, J
    CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (06) : 1053 - 1060
  • [29] SYMMETRY AND QUANTIZATION - HIGHER-ORDER POLARIZATION AND ANOMALIES
    ALDAYA, V
    NAVARROSALAS, J
    BISQUERT, J
    LOLL, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) : 3087 - 3097
  • [30] Quantization on a Lie group: Higher-order polarizations
    Aldaya, V
    Guerrero, J
    Marmo, G
    SYMMETRIES IN SCIENCE X, 1998, : 1 - 36