Space-time discontinuous Galerkin approximation of acoustic waves with point singularities

被引:12
|
作者
Bansal, Pratyuksh [1 ]
Moiola, Andrea [2 ]
Perugia, Ilaria [3 ]
Schwab, Christoph [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Ramistr 101, CH-101 Zurich, Switzerland
[2] Univ Pavia, Dept Math, Via Ferrata 5, I-27100 Pavia, Italy
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
discontinuous Galerkin method; space-time discretization; wave equation; a priori error analysis; corner singularities; locally refined meshes; h-convergence; sparse-tensor approximation; FINITE-ELEMENT METHODS; MESH REFINEMENT; EQUATIONS;
D O I
10.1093/imanum/draa088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a convergence theory of space-time discretizations for the linear, second-order wave equation in polygonal domains Omega subset of R-2, possibly occupied by piecewise homogeneous media with different propagation speeds. Building on an unconditionally stable space-time DG formulation developed in Moiola & Perugia (2018, A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math., 138, 389-435), we (a) prove optimal convergence rates for the space-time scheme with local isotropic corner mesh refinement on the spatial domain, and (b) demonstrate numerically optimal convergence rates of a suitable sparse space-time version of the DG scheme. The latter scheme is based on the so-called combination formula, in conjunction with a family of anisotropic space-time DG discretizations. It results in optimal-order convergent schemes, also in domains with corners, with a number of degrees of freedom that scales essentially like the DG solution of one stationary elliptic problem in Omega on the finest spatial grid. Numerical experiments for both smooth and singular solutions support convergence rate optimality on spatially refined meshes of the full and sparse space-time DG schemes.
引用
收藏
页码:2056 / 2109
页数:54
相关论文
共 50 条
  • [21] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Poorvi Shukla
    J. J. W. van der Vegt
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 904 - 944
  • [22] A space-time discontinuous Galerkin method for Boussinesq-type equations
    Dumbser, M.
    Facchini, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 336 - 346
  • [23] A SPACE-TIME TREFFTZ DISCONTINUOUS GALERKIN METHOD FOR THE LINEAR SCHRODINGER EQUATION
    GOMEZ, S. E. R. G. I. O.
    MOIOLA, A. N. D. R. E. A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 688 - 714
  • [24] Tensor-Product Preconditioners for a Space-Time Discontinuous Galerkin Method
    Diosady, Laslo T.
    Murman, Scott M.
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 946 - 949
  • [25] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    汪波
    谢资清
    张智民
    [J]. Acta Mathematica Scientia, 2014, 34 (05) : 1357 - 1376
  • [26] SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR MAXWELL EQUATIONS IN DISPERSIVE MEDIA
    Wang, Bo
    Xie, Ziqing
    Zhang, Zhimin
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1357 - 1376
  • [27] ON THE CONVERGENCE OF SPACE-TIME DISCONTINUOUS GALERKIN SCHEMES FOR SCALAR CONSERVATION LAWS
    May, Georg
    Zakerzadeh, Mohammad
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2452 - 2465
  • [28] A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation
    Shukla, Poorvi
    van der Vegt, J. J. W.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 904 - 944
  • [29] A splitting mixed space-time discontinuous Galerkin method for parabolic problems
    He, Siriguleng
    Li, Hong
    Liu, Yang
    Fang, Zhichao
    Yang, Jingbo
    Jia, Xianbiao
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, 2012, 31 : 1050 - 1059
  • [30] A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS
    Zhang, Tie
    Liu, Jingna
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 665 - 678