Space-time discontinuous Galerkin approximation of acoustic waves with point singularities

被引:12
|
作者
Bansal, Pratyuksh [1 ]
Moiola, Andrea [2 ]
Perugia, Ilaria [3 ]
Schwab, Christoph [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Appl Math, Ramistr 101, CH-101 Zurich, Switzerland
[2] Univ Pavia, Dept Math, Via Ferrata 5, I-27100 Pavia, Italy
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会; 欧盟地平线“2020”;
关键词
discontinuous Galerkin method; space-time discretization; wave equation; a priori error analysis; corner singularities; locally refined meshes; h-convergence; sparse-tensor approximation; FINITE-ELEMENT METHODS; MESH REFINEMENT; EQUATIONS;
D O I
10.1093/imanum/draa088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a convergence theory of space-time discretizations for the linear, second-order wave equation in polygonal domains Omega subset of R-2, possibly occupied by piecewise homogeneous media with different propagation speeds. Building on an unconditionally stable space-time DG formulation developed in Moiola & Perugia (2018, A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation. Numer. Math., 138, 389-435), we (a) prove optimal convergence rates for the space-time scheme with local isotropic corner mesh refinement on the spatial domain, and (b) demonstrate numerically optimal convergence rates of a suitable sparse space-time version of the DG scheme. The latter scheme is based on the so-called combination formula, in conjunction with a family of anisotropic space-time DG discretizations. It results in optimal-order convergent schemes, also in domains with corners, with a number of degrees of freedom that scales essentially like the DG solution of one stationary elliptic problem in Omega on the finest spatial grid. Numerical experiments for both smooth and singular solutions support convergence rate optimality on spatially refined meshes of the full and sparse space-time DG schemes.
引用
收藏
页码:2056 / 2109
页数:54
相关论文
共 50 条
  • [41] Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods
    Neumller, Martin
    Steinbach, Olaf
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (05) : 189 - 205
  • [42] Space-time discontinuous Galerkin method for the solution of fluid-structure interaction
    Balazsova, Monika
    Feistauer, Miloslav
    Horacek, Jaromir
    Hadrava, Martin
    Kosik, Adam
    [J]. APPLICATIONS OF MATHEMATICS, 2018, 63 (06) : 739 - 764
  • [43] Space-time discontinuous Galerkin method for the solution of fluid-structure interaction
    Monika Balázsová
    Miloslav Feistauer
    Jaromír Horáček
    Martin Hadrava
    Adam Kosík
    [J]. Applications of Mathematics, 2018, 63 : 739 - 764
  • [44] Space-time discontinuous Galerkin finite element method for inviscid gas dynamics
    van der Ven, H
    van der Vegt, JJW
    Bouwman, EG
    [J]. COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1181 - 1184
  • [45] SPACE-TIME MULTIPATCH DISCONTINUOUS GALERKIN ISOGEOMETRIC ANALYSIS FOR PARABOLIC EVOLUTION PROBLEMS
    Moore, Stephen Edward
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1471 - 1493
  • [46] A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains
    Rhebergen, Sander
    Cockburn, Bernardo
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (11) : 4185 - 4204
  • [47] An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Angulo, L. D.
    Alvarez, Jesus
    Fernandez Pantoja, Mario
    Gonzalez Garcia, Salvador
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (12) : 827 - 829
  • [48] Superconvergence of the space-time discontinuous Galerkin method for linear nonhomogeneous hyperbolic equations
    Hongling Hu
    Chuanmiao Chen
    Shufang Hu
    Kejia Pan
    [J]. Calcolo, 2021, 58
  • [49] Superconvergence of the space-time discontinuous Galerkin method for linear nonhomogeneous hyperbolic equations
    Hu, Hongling
    Chen, Chuanmiao
    Hu, Shufang
    Pan, Kejia
    [J]. CALCOLO, 2021, 58 (02)
  • [50] SPACE-TIME DEPENDENCE OF ACOUSTIC-WAVES IN A BOREHOLE
    SCHOENBERG, M
    MARZETTA, T
    ARON, J
    PORTER, RP
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1981, 70 (05): : 1496 - 1507