Maximum independent sets in 3-and 4-regular Hamiltonian graphs

被引:22
|
作者
Fleischner, Herbert [2 ]
Sabidussi, Gert [1 ]
Sarvanov, Vladimir I. [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
[3] Natl Acad Sci Belarus, Inst Math, Dept Combinatorial Models & Algorithms, Minsk 220072, BELARUS
基金
加拿大自然科学与工程研究理事会;
关键词
NP-completeness; Maximum independent set; 3-or 4-regular graph; Planar graphs;
D O I
10.1016/j.disc.2010.05.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Smooth 4-regular Hamiltonian graphs are generalizations of cycle-plus-triangles graphs. While the latter have been shown to be 3-choosable, 3-colorability of the former is NP-complete. In this paper we first show that the independent set problem for 3-regular Hamiltonian planar graphs is NP-complete, and using this result we show that this problem is also NP-complete for smooth 4-regular Hamiltonian graphs. We also show that this problem remains NP-complete if we restrict the problem to the existence of large independent sets (i.e., independent sets whose size is at least one third of the order of the graphs). (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2749
页数:8
相关论文
共 50 条
  • [11] 4-regular 4-connected Hamiltonian graphs with a bounded number of Hamiltonian cycles
    Thomassen, Carsten
    Zamfirescu, Carol T.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 81 : 334 - 338
  • [12] 3-REGULAR PARTS OF 4-REGULAR GRAPHS
    TASHKINOV, VA
    MATHEMATICAL NOTES, 1984, 36 (1-2) : 612 - 623
  • [13] 3-REGULAR SUBGRAPHS OF 4-REGULAR GRAPHS
    CHVATAL, V
    FLEISCHNER, H
    SHEEHAN, J
    THOMASSEN, C
    JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 371 - 386
  • [14] Domination in 4-Regular Graphs with Girth 3
    Mohanapriya, N.
    Kumar, S. Vimal
    Vivin, J. Vernold
    Venkatachalam, M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (02) : 259 - 264
  • [15] Domination in 4-Regular Graphs with Girth 3
    N. Mohanapriya
    S. Vimal Kumar
    J. Vernold Vivin
    M. Venkatachalam
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 259 - 264
  • [16] Hamiltonian decompositions of 4-regular Cayley graphs of infinite abelian groups
    Erde, Joshua
    Lehner, Florian
    JOURNAL OF GRAPH THEORY, 2022, 101 (03) : 559 - 571
  • [17] On the AVDTC of 4-regular graphs
    Papaioannou, A.
    Raftopoulou, C.
    DISCRETE MATHEMATICS, 2014, 330 : 20 - 40
  • [18] 4-REGULAR GRAPHS WITHOUT 3-REGULAR SUBGRAPHS
    ZHANG, LM
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 691 - 699
  • [19] Independent dominating sets and a second Hamiltonian cycle in regular graphs
    Thomassen, C
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 72 (01) : 104 - 109
  • [20] On Domination Number of 4-Regular Graphs
    Hailong Liu
    Liang Sun
    Czechoslovak Mathematical Journal, 2004, 54 : 889 - 898