Maximum independent sets in 3-and 4-regular Hamiltonian graphs

被引:22
|
作者
Fleischner, Herbert [2 ]
Sabidussi, Gert [1 ]
Sarvanov, Vladimir I. [3 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Vienna Univ Technol, Inst Informat Syst, A-1040 Vienna, Austria
[3] Natl Acad Sci Belarus, Inst Math, Dept Combinatorial Models & Algorithms, Minsk 220072, BELARUS
基金
加拿大自然科学与工程研究理事会;
关键词
NP-completeness; Maximum independent set; 3-or 4-regular graph; Planar graphs;
D O I
10.1016/j.disc.2010.05.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Smooth 4-regular Hamiltonian graphs are generalizations of cycle-plus-triangles graphs. While the latter have been shown to be 3-choosable, 3-colorability of the former is NP-complete. In this paper we first show that the independent set problem for 3-regular Hamiltonian planar graphs is NP-complete, and using this result we show that this problem is also NP-complete for smooth 4-regular Hamiltonian graphs. We also show that this problem remains NP-complete if we restrict the problem to the existence of large independent sets (i.e., independent sets whose size is at least one third of the order of the graphs). (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2749
页数:8
相关论文
共 50 条
  • [41] Distances and Isomorphisms in 4-regular Circulant Graphs
    Donno, Alfredo
    Iacono, Donatella
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [42] Enumeration of labelled 4-regular planar graphs
    Noy, Marc
    Requile, Clement
    Rue, Juanjo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) : 358 - 378
  • [43] INDEPENDENT SETS, CLIQUES AND HAMILTONIAN GRAPHS
    LIU, X
    GRAPHS AND COMBINATORICS, 1995, 11 (03) : 267 - 273
  • [44] Compatible circuit decompositions of 4-regular graphs
    Fleischner, Herbert
    Genest, Francois
    Jackson, Bill
    JOURNAL OF GRAPH THEORY, 2007, 56 (03) : 227 - 240
  • [45] Transformations of Assembly Number for 4-Regular Graphs
    Guterman A.E.
    Kreines E.M.
    Ostroukhova N.V.
    Journal of Mathematical Sciences, 2022, 262 (1) : 11 - 26
  • [46] 4-REGULAR PRIME GRAPHS OF NONSOLVABLE GROUPS
    Kasyoki, Donnie Munyao
    Oleche, Paul Odhiambo
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (03) : 193 - 222
  • [47] Genus Distributions of 4-Regular Outerplanar Graphs
    Poshni, Mehvish I.
    Khan, Imran F.
    Gross, Jonathan L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [48] Sorting by reversals and the theory of 4-regular graphs
    Brijder, Robert
    THEORETICAL COMPUTER SCIENCE, 2017, 701 : 40 - 53
  • [49] Decycling Number of a class of 4-regular graphs
    Wei, Erling
    Liu, Jiangtao
    Ren, Han
    ARS COMBINATORIA, 2018, 139 : 315 - 326
  • [50] Even cycle decompositions of 4-regular graphs and line graphs
    Markstrom, Klas
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2676 - 2681