Fast-bit-limited lifetime modeling of advanced floating gate non-volatile memories

被引:11
|
作者
Scarpa, A [1 ]
Tao, G [1 ]
Dijkstra, J [1 ]
Kuper, FG [1 ]
机构
[1] Philips Semicond, NL-6534 NE Nijmegen, Netherlands
关键词
D O I
10.1109/IRWS.2000.911894
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The few fast bits, resulting from stress induced leakage current, that are found in a memory array limit lifetime of an entire device. instead of classical temperature accelerated tests, 'simple' gate stress represents therefore the correct method to study the advanced non-volatile memory retention behavior. In this paper a model is proposed to predict the memory lifetime under use conditions based on accelerated gate stress measurements. The model considers a statistical approach, in order to overcome the erratic behavior of fast bits. It enables predicting the lifetime of memory. products as function of memory size and number of write/erase cycles. Application of the model is discussed as well as a wafer level implementation form.
引用
收藏
页码:24 / 28
页数:5
相关论文
共 50 条
  • [1] Data retention prediction for modern floating gate non-volatile memories
    Tao, G
    Scarpa, A
    Dijkstra, J
    Stidl, W
    Kuper, F
    [J]. MICROELECTRONICS RELIABILITY, 2000, 40 (8-10) : 1561 - 1566
  • [2] 3D simulation study of gate coupling and gate cross-interference in advanced floating gate non-volatile memories
    Ghetti, A
    Bortesi, L
    Vendrame, L
    [J]. SOLID-STATE ELECTRONICS, 2005, 49 (11) : 1805 - 1812
  • [3] A New Methodology for Assessment of the Susceptibility to Data Retention in Floating Gate Non-Volatile Memories
    Shih, Chih-Ching
    Lee, Ming-Yi
    Ku, Shaw-Hung
    Lee, Lien-Feng
    Kuo, Li-Kuang
    Tsai, Wen-Jer
    Lin, D. J.
    Lu, Wen-Pin
    Lu, Tao-Chen
    Chen, Kuang-Chao
    Chao, Yen-Hie
    Lu, Chih-Yuan
    [J]. 2017 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2017,
  • [4] A reliability methodology for Low Temperature Data Retention in floating gate non-volatile memories
    Kuhn, PJ
    Hoefler, A
    Harp, T
    Hornung, B
    Paulsen, R
    Burnett, D
    Higman, JM
    [J]. 39TH ANNUAL PROCEEDINGS: INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM 2001, 2001, : 266 - 270
  • [5] Total Ionizing Dose Effects in Commercial Floating-Gate-Alternative Non-Volatile Memories
    Gadlage, Matthew J.
    Kay, Matthew J.
    Bruce, David I.
    Roach, Austin H.
    Duncan, Adam R.
    Williams, Aaron M.
    Ingalls, J. David
    [J]. 2017 IEEE RADIATION EFFECTS DATA WORKSHOP (REDW), 2017, : 182 - 186
  • [6] Back-floating gate non-volatile memory
    Avci, U
    Kumar, A
    Tiwari, S
    [J]. 2004 IEEE INTERNATIONAL SOI CONFERENCE, PROCEEDINGS, 2004, : 133 - 135
  • [7] Opportunities and challenges in multi-times-programmable floating-gate logic non-volatile memories
    Wang, Bin
    Ma, Yanjun
    [J]. 2008 JOINT NON-VOLATILE SEMICONDUCTOR MEMORY WORKSHOP AND INTERNATIONAL CONFERENCE ON MEMORY TECHNOLOGY AND DESIGN, PROCEEDINGS, 2008, : 22 - 25
  • [8] Composing Lifetime Enhancing Techniques for Non-Volatile Main Memories
    Garcia, Andres Amaya
    Wang, William
    de Jong, Rene
    Diestelhorst, Stephan
    [J]. MEMSYS 2017: PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS, 2017, : 363 - 373
  • [9] Independent Double Gate - Potential for Non-Volatile Memories.
    Bossu, G.
    Puget, S.
    Masson, P.
    Portal, J-M.
    Bouchakour, R.
    Mazoyer, P.
    Skotnicki, T.
    [J]. 2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 183 - +
  • [10] Structural Characterization of Layers for Advanced Non-volatile Memories
    Giannakopoulos, K.
    Giannopoulos, J.
    Bousoulas, P.
    Verrelli, E.
    Tsoukalas, D.
    [J]. 2ND INTERNATIONAL MULTIDISCIPLINARY MICROSCOPY AND MICROANALYSIS CONGRESS, 2015, 164 : 9 - 17