An extension of quasi-hyperbolic discounting to continuous time

被引:21
|
作者
Pan, Jinrui [1 ]
Webb, Craig S. [1 ]
Zank, Horst [1 ]
机构
[1] Univ Manchester, Econ, Manchester M13 9PL, Lancs, England
关键词
Discounting; Present bias; Decreasing impatience; Bargaining; UTILITY; CHOICE; EQUILIBRIUM; CONSISTENCY; FUTURE;
D O I
10.1016/j.geb.2014.11.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
Two-Stage Exponential (TSE) discounting, the model developed here, generalises exponential discounting in a parsimonious way. It can be seen as an extension of Quasi-Hyperbolic discounting to continuous time. A TSE discounter has a constant rate of time preference before and after some threshold time; the switch point. If the switch point is expressed in calendar time, TSE discounting captures time consistent behaviour. If it is expressed in waiting time, TSE discounting captures time invariant behaviour. We provide preference foundations for all cases, showing how the switch point is derived endogenously from behaviour. We apply each case to Rubinstein's infinite-horizon, alternating-offers bargaining model. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 50 条
  • [41] Families of explicit quasi-hyperbolic and hyperbolic surfaces
    Garcia-Fritz, Natalia
    Urzua, Giancarlo
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 573 - 593
  • [42] QUASI-HYPERBOLIC PLANES IN RELATIVELY HYPERBOLIC GROUPS
    Mackay, John M.
    Sisto, Alessandro
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 139 - 174
  • [43] Naivete about temptation and self-control: Foundations for recursive naive quasi-hyperbolic discounting
    Ahn, David S.
    Iijima, Ryota
    Sarver, Todd
    [J]. JOURNAL OF ECONOMIC THEORY, 2020, 189
  • [44] BOUNDARY BEHAVIOR OF THE QUASI-HYPERBOLIC METRIC
    Nikolov, Nikolai
    Thomas, Pascal J.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 381 - 389
  • [45] UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC
    GEHRING, FW
    OSGOOD, BG
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 : 50 - 74
  • [46] Estimates of the Kobayashi and quasi-hyperbolic distances
    Nikolai Nikolov
    Lyubomir Andreev
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 43 - 50
  • [47] Prudent aggregation of quasi-hyperbolic experts
    Dong-Xuan, Bach
    Bich, Philippe
    Wigniolle, Bertrand
    [J]. ECONOMIC THEORY, 2024,
  • [48] Estimates of the Kobayashi and quasi-hyperbolic distances
    Nikolov, Nikolai
    Andreev, Lyubomir
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (01) : 43 - 50
  • [49] Quasi-hyperbolic preferences and retirement: A comment
    Holmes, Craig
    [J]. JOURNAL OF PUBLIC ECONOMICS, 2010, 94 (1-2) : 129 - 130
  • [50] Time consistent Markov policies in dynamic economies with quasi-hyperbolic consumers
    Balbus, Lukasz
    Reffett, Kevin
    Wozny, Lukasz
    [J]. INTERNATIONAL JOURNAL OF GAME THEORY, 2015, 44 (01) : 83 - 112