Estimates of the Kobayashi and quasi-hyperbolic distances

被引:0
|
作者
Nikolai Nikolov
Lyubomir Andreev
机构
[1] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
[2] State University of Library Studies and Information Technologies,Faculty of Information Sciences
关键词
Kobayashi distance; Quasi-hyperbolic distance; 32F45; 51M10;
D O I
暂无
中图分类号
学科分类号
摘要
Universal upper bounds for the Kobayashi and quasi-hyperbolic distances near Dini-smooth boundary points of domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}^n$$\end{document} and Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}, respectively, are obtained.
引用
收藏
页码:43 / 50
页数:7
相关论文
共 50 条
  • [1] Estimates of the Kobayashi and quasi-hyperbolic distances
    Nikolov, Nikolai
    Andreev, Lyubomir
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (01) : 43 - 50
  • [2] The Quasi-Hyperbolic Tribonacci and Quasi-Hyperbolic Tribonacci-Lucas Functions
    Ta, Dursun
    Azman, Huriye
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2014, 5 (01): : 31 - 40
  • [3] Quasi-hyperbolic semigroups
    Batty, Charles J. K.
    Tomilov, Yuri
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (11) : 3855 - 3878
  • [4] Quasi-hyperbolic planes in hyperbolic groups
    Bonk, M
    Kleiner, B
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) : 2491 - 2494
  • [5] Continuous quasi-hyperbolic discounting
    Webb, Craig S.
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 2016, 64 : 99 - 106
  • [6] Families of explicit quasi-hyperbolic and hyperbolic surfaces
    Natalia Garcia-Fritz
    Giancarlo Urzúa
    [J]. Mathematische Zeitschrift, 2020, 296 : 573 - 593
  • [7] Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane
    Ivana Božić Dragun
    Helena Koncul
    [J]. Journal of Geometry, 2023, 114
  • [8] Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane
    Dragun, Ivana Bozic
    Koncul, Helena
    [J]. JOURNAL OF GEOMETRY, 2023, 114 (02)
  • [9] Quasi-hyperbolic discounting and retirement
    Diamond, P
    Köszegi, B
    [J]. JOURNAL OF PUBLIC ECONOMICS, 2003, 87 (9-10) : 1839 - 1872
  • [10] Families of explicit quasi-hyperbolic and hyperbolic surfaces
    Garcia-Fritz, Natalia
    Urzua, Giancarlo
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 573 - 593