Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane

被引:0
|
作者
Ivana Božić Dragun
Helena Koncul
机构
[1] Zagreb University of Applied Sciences,Civil Engineering Department
[2] University of Zagreb,Faculty of Civil Engineering
来源
Journal of Geometry | 2023年 / 114卷
关键词
Evolute; Order; Class; Quasi-hyperbolic plane; Hyperbolic plane;
D O I
暂无
中图分类号
学科分类号
摘要
The evolute of a conic is a curve of order six and class four in the general case. This paper is an extension of Božić Dragun (Mathematica Pannonica 29, 77–86, 2023) where we discuss and compute the order and class of evolutes of different types of conics in the pseudo-Euclidean plane. In this paper we will emphasize on the evolute’s characteristics related to Plücker formulas in the conveniently selected model of the quasi-hyperbolic plane and the projectively extended hyperbolic plane. Also construction details of the evolute of a conic in the projectively extended hyperbolic plane will be shown.
引用
收藏
相关论文
共 50 条
  • [1] Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane
    Dragun, Ivana Bozic
    Koncul, Helena
    JOURNAL OF GEOMETRY, 2023, 114 (02)
  • [2] Quasi-hyperbolic planes in hyperbolic groups
    Bonk, M
    Kleiner, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) : 2491 - 2494
  • [3] Evolutes of Hyperbolic Plane Curves
    Shyuichi IZUMIYA
    Takashi SANO
    Erika TORII
    Acta Mathematica Sinica,English Series, 2004, 20 (03) : 543 - 550
  • [4] Evolutes of hyperbolic plane curves
    Izumiya, S
    Pei, DH
    Sano, T
    Torii, E
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (03) : 543 - 550
  • [5] The Quasi-Hyperbolic Tribonacci and Quasi-Hyperbolic Tribonacci-Lucas Functions
    Ta, Dursun
    Azman, Huriye
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2014, 5 (01): : 31 - 40
  • [6] Quasi-hyperbolic semigroups
    Batty, Charles J. K.
    Tomilov, Yuri
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (11) : 3855 - 3878
  • [7] Evolutes of Hyperbolic Plane Curves
    Shyuichi Izumiya
    Dong He Pei
    Takashi Sano
    Erika Torii
    Acta Mathematica Sinica, 2004, 20 : 543 - 550
  • [8] Families of explicit quasi-hyperbolic and hyperbolic surfaces
    Natalia Garcia-Fritz
    Giancarlo Urzúa
    Mathematische Zeitschrift, 2020, 296 : 573 - 593
  • [9] Families of explicit quasi-hyperbolic and hyperbolic surfaces
    Garcia-Fritz, Natalia
    Urzua, Giancarlo
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 573 - 593
  • [10] QUASI-HYPERBOLIC PLANES IN RELATIVELY HYPERBOLIC GROUPS
    Mackay, John M.
    Sisto, Alessandro
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 139 - 174