Families of explicit quasi-hyperbolic and hyperbolic surfaces

被引:1
|
作者
Garcia-Fritz, Natalia [1 ]
Urzua, Giancarlo [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Campus San Joaquin,Ave Vicuna Mackenna 4860, Santiago, Chile
关键词
D O I
10.1007/s00209-019-02439-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicit families of quasi-hyperbolic and hyperbolic surfaces parametrized by quasi-projective bases. The method we develop in this paper extends earlier works of Vojta and the first author for smooth surfaces to the case of singular surfaces, through the use of ramification indices on exceptional divisors. The novelty of the method allows us to obtain new results for the surface of cuboids, the generalized surfaces of cuboids, and other explicit families of Diophantine surfaces of general type. In particular, we produce new families of smooth complete intersection surfaces of multidegrees m1, horizontal ellipsis. These families give evidence for [6, Conjecture 0.18] in the case of surfaces.
引用
收藏
页码:573 / 593
页数:21
相关论文
共 50 条
  • [1] Families of explicit quasi-hyperbolic and hyperbolic surfaces
    Natalia Garcia-Fritz
    Giancarlo Urzúa
    [J]. Mathematische Zeitschrift, 2020, 296 : 573 - 593
  • [2] Quasi-hyperbolic planes in hyperbolic groups
    Bonk, M
    Kleiner, B
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) : 2491 - 2494
  • [3] The Quasi-Hyperbolic Tribonacci and Quasi-Hyperbolic Tribonacci-Lucas Functions
    Ta, Dursun
    Azman, Huriye
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2014, 5 (01): : 31 - 40
  • [4] Quasi-hyperbolic semigroups
    Batty, Charles J. K.
    Tomilov, Yuri
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (11) : 3855 - 3878
  • [5] Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane
    Ivana Božić Dragun
    Helena Koncul
    [J]. Journal of Geometry, 2023, 114
  • [6] Evolutes of conics in the quasi-hyperbolic and the hyperbolic plane
    Dragun, Ivana Bozic
    Koncul, Helena
    [J]. JOURNAL OF GEOMETRY, 2023, 114 (02)
  • [7] QUASI-HYPERBOLIC PLANES IN RELATIVELY HYPERBOLIC GROUPS
    Mackay, John M.
    Sisto, Alessandro
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 139 - 174
  • [8] Continuous quasi-hyperbolic discounting
    Webb, Craig S.
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 2016, 64 : 99 - 106
  • [9] Quasi-hyperbolic discounting and retirement
    Diamond, P
    Köszegi, B
    [J]. JOURNAL OF PUBLIC ECONOMICS, 2003, 87 (9-10) : 1839 - 1872
  • [10] BOUNDARY BEHAVIOR OF THE QUASI-HYPERBOLIC METRIC
    Nikolov, Nikolai
    Thomas, Pascal J.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 381 - 389