Vertex distinguishing equitable total chromatic number of join graph

被引:17
|
作者
Wang, Zhi-wen [1 ,2 ]
Yan, Li-hong [2 ]
Zhang, Zhong-fu [3 ]
机构
[1] Yeungnam Univ, Dept Math, Kyongsan 712749, Kyongbuk, South Korea
[2] Xianyang Normal Univ, Dept Math, Xianyang 712000, Peoples R China
[3] Lanzhou Jiaotong Univ, Sch Math, Lanzhou 730070, Peoples R China
来源
关键词
path; cycle; join graph; vertex distinguishing equitable total chromatic number;
D O I
10.1007/s10255-007-0383-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs P-n V P-n, C-n V C-n and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs P-n V P-n and C-n V C-n.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [41] Total chromatic number of one kind of join graphs
    Li, Guangrong
    Zhang, Limin
    DISCRETE MATHEMATICS, 2006, 306 (16) : 1895 - 1905
  • [42] Total Chromatic Number of the Join of Km,n and Cn
    LI Guang-rong
    数学季刊, 2006, (02) : 264 - 270
  • [43] An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph
    Lih, K.-W. (makwlih@sinica.edu.tw), 1600, Elsevier B.V., Netherlands (162):
  • [44] An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph
    Zhang, Lianzhu
    Wang, Weifan
    Lih, Ko-Wei
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 348 - 354
  • [45] An improved upper bound on the adjacent vertex distinguishing chromatic index of a graph
    Zhang, Lianzhu
    Wang, Weifan
    Lih, Ko-Wei
    Discrete Applied Mathematics, 2014, 162 : 348 - 354
  • [46] Total and adjacent vertex-distinguishing total chromatic numbers of augmented cubes
    Chen, Meirun
    Zhai, Shaohui
    ARS COMBINATORIA, 2014, 114 : 87 - 96
  • [47] Neighbor sum distinguishing total chromatic number of K4-minor free graph
    Hongjie Song
    Changqing Xu
    Frontiers of Mathematics in China, 2017, 12 : 937 - 947
  • [48] Neighbor sum distinguishing total chromatic number of K 4-minor free graph
    Song, Hongjie
    Xu, Changqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 937 - 947
  • [49] On the vertex face total chromatic number of planar graphs
    Wang, WF
    Liu, JZ
    JOURNAL OF GRAPH THEORY, 1996, 22 (01) : 29 - 37
  • [50] Recursive Linear Bounds for the Vertex Chromatic Number of the Pancake Graph
    Asuncion, Aldrich Ellis C.
    Tan, Renzo Roel P.
    Shio, Christian Paul O. Chan
    Ikeda, Kazushi
    IAENG International Journal of Applied Mathematics, 2022, 52 (01):