Vertex distinguishing equitable total chromatic number of join graph

被引:17
|
作者
Wang, Zhi-wen [1 ,2 ]
Yan, Li-hong [2 ]
Zhang, Zhong-fu [3 ]
机构
[1] Yeungnam Univ, Dept Math, Kyongsan 712749, Kyongbuk, South Korea
[2] Xianyang Normal Univ, Dept Math, Xianyang 712000, Peoples R China
[3] Lanzhou Jiaotong Univ, Sch Math, Lanzhou 730070, Peoples R China
来源
关键词
path; cycle; join graph; vertex distinguishing equitable total chromatic number;
D O I
10.1007/s10255-007-0383-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs P-n V P-n, C-n V C-n and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs P-n V P-n and C-n V C-n.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [21] On Adjacent Vertex-distinguishing Total Chromatic Number of Generalized Mycielski Graphs
    Zhu, Enqiang
    Liu, Chanjuan
    Xu, Jin
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02): : 253 - 266
  • [22] The adjacent vertex-distinguishing total chromatic number of 1-tree
    Wang, Haiying
    ARS COMBINATORIA, 2009, 91 : 183 - 192
  • [23] A Note on the Adjacent Vertex Distinguishing Total Chromatic Number of Some Cubic Graphs
    Chen, Qin
    ARS COMBINATORIA, 2016, 124 : 319 - 327
  • [24] An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs
    Vuckovic, Bojan
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1472 - 1478
  • [25] An improved upper bound on the adjacent vertex distinguishing edge chromatic number of a simple graph
    Wang, Tao
    Li, Deming
    ARS COMBINATORIA, 2013, 110 : 421 - 433
  • [26] Upper Bounds on the D(β)-Vertex-Distinguishing Total-Chromatic Number of Graphs
    Liu Xin-sheng
    Zhu Zhi-qiang
    ARS COMBINATORIA, 2015, 119 : 403 - 411
  • [27] On the adjacent vertex distinguishing edge chromatic number of graphs
    Wang, Zhiwen
    ARS COMBINATORIA, 2016, 124 : 379 - 388
  • [28] TOTAL CHROMATIC NUMBER OF A GRAPH
    VIJAYADITYA, N
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1971, 3 (APR): : 405 - +
  • [29] Adjacent vertex-distinguishing E-total coloring on the multiple join graph of complete graph and wheel
    Li, Muchun
    Zhang, Li
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1605 - 1608
  • [30] On the equitable total chromatic number of cubic graphs
    Dantas, S.
    de Figueiredo, C. M. H.
    Mazzuoccolo, G.
    Preissmann, M.
    dos Santos, V. F.
    Sasaki, D.
    DISCRETE APPLIED MATHEMATICS, 2016, 209 : 84 - 91