On the adjacent vertex distinguishing edge chromatic number of graphs

被引:0
|
作者
Wang, Zhiwen [1 ,2 ]
机构
[1] Ningxia Univ, Sch Math & Comp Sci, Ningxia 750021, Peoples R China
[2] Yeungnam Univ, Dept Math, Kyongsan 712749, Kyongbuk, South Korea
基金
中国国家自然科学基金;
关键词
Adjacent vertex distinguishing edge coloring; Adjacent vertex distinguishing edge chromatic number; COLORINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An adjacent vertex distinguishing edge coloring or an avd-coloring of a simple graph G is a proper edge coloring of G such that for any two adjacent and distinct vertices u and v in G, the set of colors assigned to the edges incident to u differs from the set of colors assigned to the edges incident to v. In this paper, we prove that graphs with maximum 3 and with no any isolated edges partly satisfy the adjacent vertex distinguishing edge coloring conjecture.
引用
收藏
页码:379 / 388
页数:10
相关论文
共 50 条
  • [1] The Adjacent Vertex Distinguishing Total Chromatic Number of Graphs
    Wang, Zhiwen
    Zhu, Enqiang
    [J]. 2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [2] The adjacent vertex distinguishing total chromatic number of graphs
    Wang, Zhiwen
    Zhu, Enqiang
    [J]. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, 2010,
  • [3] A note on the adjacent vertex distinguishing total chromatic number of graphs
    Huang, Danjun
    Wang, Weifan
    Yan, Chengchao
    [J]. DISCRETE MATHEMATICS, 2012, 312 (24) : 3544 - 3546
  • [4] Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number
    Hatami, H
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (02) : 246 - 256
  • [5] On the Adjacent Vertex Strong Distinguishing Total chromatic number of Some Graphs
    Yan, Qiantai.
    Li, Wuzhuang.
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA), 2013, : 391 - 394
  • [7] Upper bounds on adjacent vertex distinguishing total chromatic number of graphs
    Hu, Xiaolan
    Zhang, Yunqing
    Miao, Zhengke
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 233 : 29 - 32
  • [8] The adjacent vertex distinguishing total chromatic number
    Coker, Tom
    Johannson, Karen
    [J]. DISCRETE MATHEMATICS, 2012, 312 (17) : 2741 - 2750
  • [9] On Adjacent Vertex-Distinguishing Total Chromatic Number of Generalized Petersen Graphs
    Zhu, Enqiang
    Jiang, Fei
    Li, Zepeng
    Shao, Zehui
    Xu, Jin
    [J]. 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 230 - 234
  • [10] A Note on the Adjacent Vertex Distinguishing Total Chromatic Number of Some Cubic Graphs
    Chen, Qin
    [J]. ARS COMBINATORIA, 2016, 124 : 319 - 327