Total Chromatic Number of the Join of Km,n and Cn

被引:0
|
作者
LI Guang-rong
机构
关键词
total coloring; total chromatic number; join graphs; cycle; complete bipartite graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
The total chromatic number XT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if XT(G)=Δ(G) + 1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.
引用
收藏
页码:264 / 270
页数:7
相关论文
共 50 条
  • [1] Total chromatic number of one kind of join graphs
    Li, Guangrong
    Zhang, Limin
    DISCRETE MATHEMATICS, 2006, 306 (16) : 1895 - 1905
  • [2] Vertex distinguishing equitable total chromatic number of join graph
    Wang, Zhi-wen
    Yan, Li-hong
    Zhang, Zhong-fu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (03): : 433 - 438
  • [3] Vertex Distinguishing Equitable Total Chromatic Number of Join Graph
    Zhi-wen Wang
    Li-hong Yan
    Zhong-fu Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 433 - 438
  • [4] Vertex Distinguishing Equitable Total Chromatic Number of Join Graph
    Zhi-wen Wang~(1
    Acta Mathematicae Applicatae Sinica, 2007, (03) : 433 - 438
  • [5] On the b-Chromatic Sum of Mycielskian of Km,n, Kn and Cn
    Lisna, P. C.
    Sunitha, M. S.
    JOURNAL OF INTERCONNECTION NETWORKS, 2020, 20 (02)
  • [6] THE LOCATING CHROMATIC NUMBER OF THE JOIN OF GRAPHS
    Behtoei, A.
    Anbarloei, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (06): : 1491 - 1504
  • [7] Modular Chromatic Number of Cm □ Cn
    Paramaguru, N.
    Sampathkumar, R.
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, 2014, 246 : 331 - 338
  • [8] On the total chromatic edge stability number and the total chromatic subdivision number of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 1 - 8
  • [9] On the sigma chromatic number of the join of a finite number of paths and cycles
    Garciano, Agnes D.
    Lagura, Maria Czarina T.
    Marcelo, Reginaldo M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)
  • [10] Spectral Inequalities on Independence Number, Chromatic Number, and Total Chromatic Number of a Graph
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (1-2): : 41 - 46