Total Chromatic Number of the Join of Km,n and Cn

被引:0
|
作者
LI Guang-rong
机构
关键词
total coloring; total chromatic number; join graphs; cycle; complete bipartite graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
The total chromatic number XT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if XT(G)=Δ(G) + 1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.
引用
收藏
页码:264 / 270
页数:7
相关论文
共 50 条
  • [31] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    张忠辅
    张建勋
    王建方
    ScienceinChina,SerA., 1988, Ser.A.1988 (12) : 1434 - 1441
  • [32] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1988, 31 (12): : 1434 - 1441
  • [33] Snarks with total chromatic number 5
    Brinkmann, Gunnar
    Preissmann, Myriam
    Sasaki, Diana
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 369 - 382
  • [34] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    张忠辅
    张建勋
    王建方
    Science China Mathematics, 1988, (12) : 1434 - 1441
  • [35] RECENT RESULTS ON THE TOTAL CHROMATIC NUMBER
    HILTON, AJW
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 323 - 331
  • [36] Total chromatic number of honeycomb network
    Shyama, S.
    Chithra, M. R.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (04): : 931 - 937
  • [37] AN UPPER BOUND FOR THE TOTAL CHROMATIC NUMBER
    HIND, HR
    GRAPHS AND COMBINATORICS, 1990, 6 (02) : 153 - 159
  • [38] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF CYCLE-RELATED JOIN GRAPHS
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 133 - 152
  • [39] The Sigma Chromatic Number of the Circulant Graphs Cn(1,2), Cn(1,3), and C2n(1, n)
    Luzon, Paul Adrian D.
    Ruiz, Mari-Jo P.
    Tolentino, Mark Anthony C.
    DISCRETE AND COMPUTATIONAL GEOMETRY AND GRAPHS, JCDCGG 2015, 2016, 9943 : 216 - 227
  • [40] On the vertex-distinguishing edge chromatic number of Cm ∨ Cn
    Jingwen, Li
    Baogen, Xu
    Zhang Zhongfu
    PROCEEDINGS OF THE CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY, VOL 4, NO 3, 2008, : 235 - 237