Total Chromatic Number of the Join of Km,n and Cn

被引:0
|
作者
LI Guang-rong
机构
关键词
total coloring; total chromatic number; join graphs; cycle; complete bipartite graph;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
The total chromatic number XT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if XT(G)=Δ(G) + 1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.
引用
收藏
页码:264 / 270
页数:7
相关论文
共 50 条
  • [21] ON N-TOTAL CHROMATIC NUMBER OF A GRAPH AND ITS COMPLEMENT GRAPH
    ZHANG, ZF
    SUN, L
    CHINESE SCIENCE BULLETIN, 1991, 36 (13): : 1134 - 1134
  • [22] ON n-TOTAL CHROMATIC NUMBER OF A GRAPH AND ITS COMPLEMENT GRAPH
    张忠辅
    孙良
    ChineseScienceBulletin, 1991, (13) : 1134 - 1134
  • [23] On join product and local antimagic chromatic number of regular graphs
    G. -C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 108 - 133
  • [24] On join product and local antimagic chromatic number of regular graphs
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 108 - 133
  • [25] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    KEXUE TONGBAO, 1987, 32 (17): : 1223 - 1223
  • [26] ON TOTAL CHROMATIC NUMBER OF OUTERPLANAR GRAPH
    张忠辅
    张建勋
    王建方
    ScienceBulletin, 1987, (17) : 1223 - 1223
  • [27] Total chromatic number of folded hypercubes
    Chen, Meirun
    Guo, Xiaofeng
    Zhai, Shaohui
    ARS COMBINATORIA, 2013, 111 : 265 - 272
  • [28] The history of the total chromatic number conjecture
    Shahmohamad, H., 1600, Charles Babbage Research Centre (86):
  • [29] Snarks with total chromatic number 5
    Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Belgium
    不详
    不详
    Discrete Math. Theor. Comput. Sci., 1 (369-382):
  • [30] TOTAL DOMINATOR CHROMATIC NUMBER OF A GRAPH
    Kazemi, Adel P.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 57 - 68