On the total chromatic edge stability number and the total chromatic subdivision number of graphs

被引:2
|
作者
Kemnitz, Arnfried [1 ]
Marangio, Massimiliano [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Computat Math, Univ Pl 2, D-38106 Braunschweig, Germany
关键词
total chromatic edge stability number; total chromatic subdivision number; total chromatic number; total coloring;
D O I
10.47443/dml.2021.111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper total coloring of a graph G is an assignment of colors to the vertices and edges of G (together called the elements of G) such that neighbored elements-two adjacent vertices or two adjacent edges or a vertex and an incident edge-are colored differently. The total chromatic number chi ''(G) of G is defined as the minimum number of colors in a proper total coloring of G. In this paper, we study the stability of the total chromatic number of a graph with respect to two operations, namely removing edges and subdividing edges, which leads to the following two invariants. (i) The total chromatic edge stability number or chi ''-edge stability number es(chi '')(G) is the minimum number of edges of G whose removal results in a graph H subset of G with chi ''(H) not equal chi ''(G) or with E(H) = empty set. (ii) The total chromatic subdivision number or chi ''-subdivision number sd(chi '')(G) is the minimum number of edges of G whose subdivision results in a graph H subset of G with chi ''(H) not equal chi ''(G) or with E(H) not equal empty set. We prove general lower and upper bounds for es(chi '')(G). Moreover, we determine sd(chi '')(G) and sd(chi '')(G) for some classes of graphs.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Total Dominator Edge Chromatic Number of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    IAENG International Journal of Applied Mathematics, 2021, 51 (04) : 1 - 6
  • [2] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [3] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551
  • [4] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    ZHANG, ZF
    ZHANG, JX
    WANG, JF
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1988, 31 (12): : 1434 - 1441
  • [5] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    张忠辅
    张建勋
    王建方
    ScienceinChina,SerA., 1988, Ser.A.1988 (12) : 1434 - 1441
  • [6] THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS
    张忠辅
    张建勋
    王建方
    Science China Mathematics, 1988, (12) : 1434 - 1441
  • [7] EDGE-FACE TOTAL CHROMATIC NUMBER OF HALIN GRAPHS
    Chan, W. H.
    Lam, Peter C. B.
    Shiu, W. C.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1646 - 1654
  • [8] On the local antimagic total edge chromatic number of amalgamation of graphs
    Kurniawati, Elsa Yuli
    Agustin, Ika Hesti
    Dafik
    Alfarisi, Ridho
    Marsidi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [9] On the edge chromatic vertex stability number of graphs
    Alikhani, Saeid
    Piri, Mohammad R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 29 - 34
  • [10] Total dominator chromatic number of Kneser graphs
    Jalilolghadr, Parvin
    Behtoei, Ali
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 52 - 56