Total dominator chromatic number of Kneser graphs

被引:0
|
作者
Jalilolghadr, Parvin [1 ]
Behtoei, Ali [2 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Ardebil, Iran
[2] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
关键词
Kneser graph; total dominator coloring; Steiner triple system; total domination;
D O I
10.1080/09728600.2023.2170299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Decomposition into special substructures inheriting significant properties is an important method for the investigation of some mathematical structures. A total dominator coloring (briefly, a TDC) of a graph G is a proper coloring (i.e. a partition of the vertex set V(G) into independent subsets named color classes) in which each vertex of the graph is adjacent to all of vertices of some color class. The total dominator chromatic number chi(td)(G) of G is the minimum number of color classes in a TDC of G. In this paper among some other results and by using the existence of Steiner triple systems, we determine the total dominator chromatic number of the Kneser graph KG(n,2) for each n >= 5.
引用
收藏
页码:52 / 56
页数:5
相关论文
共 50 条
  • [1] On the double total dominator chromatic number of graphs
    Beggas, Fairouz
    Kheddouci, Hamamache
    Marweni, Walid
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [2] Total Dominator Edge Chromatic Number of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    [J]. IAENG International Journal of Applied Mathematics, 2021, 51 (04) : 1 - 6
  • [3] TOTAL GLOBAL DOMINATOR CHROMATIC NUMBER OF GRAPHS
    Askari, S.
    Mojdeh, D. A.
    Nazari, E.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (02): : 650 - 661
  • [4] Total dominator chromatic number of Mycieleskian graphs
    Kazemi, Adel P.
    [J]. UTILITAS MATHEMATICA, 2017, 103 : 129 - 137
  • [5] On the locating chromatic number of Kneser graphs
    Behtoei, Ali
    Omoomi, Behnaz
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2214 - 2221
  • [6] On the Chromatic Number of Matching Kneser Graphs
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (01): : 1 - 21
  • [7] The Distinguishing Chromatic Number of Kneser Graphs
    Che, Zhongyuan
    Collins, Karen L.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [8] ON THE CHROMATIC NUMBER OF GENERALIZED KNESER GRAPHS
    Jafari, Amir
    Alipour, Sharareh
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 69 - 76
  • [9] Circular chromatic number of Kneser graphs
    Hajiabolhassan, H
    Zhu, X
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) : 299 - 303
  • [10] TOTAL DOMINATOR CHROMATIC NUMBER OF A GRAPH
    Kazemi, Adel P.
    [J]. TRANSACTIONS ON COMBINATORICS, 2015, 4 (02) : 57 - 68