Mean-field variational approximate Bayesian inference for latent variable models

被引:39
|
作者
Consonni, Guido [2 ]
Marin, Jean-Michel [1 ]
机构
[1] Univ Orsay, Lab Math Bat 425, INRIA FUTURS Projects SELECT, F-91405 Orsay, France
[2] Univ Pavia, Dept Econ & Quantitat Methods, I-27100 Pavia, Italy
关键词
bayesian inference; Bayesian probit model; Gibbs sampling; latent variable models; marginal distribution; mean-field variational methods;
D O I
10.1016/j.csda.2006.10.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ill-posed nature of missing variable models offers a challenging testing ground for new computational techniques. This is the case for the mean-field variational Bayesian inference. The behavior of this approach in the setting of the Bayesian probit model is illustrated. It is shown that the mean-field variational method always underestimates the posterior variance and, that, for small sample sizes, the mean-field variational approximation to the posterior location could be poor. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:790 / 798
页数:9
相关论文
共 50 条
  • [21] A Fixed-Point Operator for Inference in Variational Bayesian Latent Gaussian Models
    Sheth, Rishit
    Khardon, Roni
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 761 - 769
  • [22] Mean-Field Approximate Optimization Algorithm
    Misra-Spieldenner, Aditi
    Bode, Tim
    Schuhmacher, Peter K.
    Stollenwerk, Tobias
    Bagrets, Dmitry
    Wilhelm, Frank K.
    PRX QUANTUM, 2023, 4 (03):
  • [23] Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
    Gal, Yarin
    van der Wilk, Mark
    Rasmussen, Carl E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [24] Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference
    Lalchand, Vidhi
    Ravuri, Aditya
    Lawrence, Neil D.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [25] Approximate Bayesian Inference for Survival Models
    Martino, Sara
    Akerkar, Rupali
    Rue, Havard
    SCANDINAVIAN JOURNAL OF STATISTICS, 2011, 38 (03) : 514 - 528
  • [26] Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations
    Vrettas, Michail D.
    Opper, Manfred
    Cornford, Dan
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [27] Approximate Bayesian inference for hierarchical Gaussian Markov random field models
    Rue, Havard
    Martino, Sara
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (10) : 3177 - 3192
  • [28] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    Machine Learning, 2021, 110 : 1105 - 1143
  • [29] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [30] Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    Rue, Havard
    Martino, Sara
    Chopin, Nicolas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 319 - 392