Tensor Envelope Partial Least-Squares Regression

被引:39
|
作者
Zhang, Xin [1 ]
Li, Lexin [2 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; Multidimensional array; Neuroimaging analysis; Partial least squares; Reduced rank regression; Sparsity principle;
D O I
10.1080/00401706.2016.1272495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial least squares (PLS) is a prominent solution for dimension reduction and high-dimensional regressions. Recent prevalence of multidimensional tensor data has led to several tensor versions of the PLS algorithms. However, none offers a population model and interpretation, and statistical properties of the associated parameters remain intractable. In this article, we first propose a new tensor partial least-squares algorithm, then establish the corresponding population interpretation. This population investigation allows us to gain new insight on how the PLS achieves effective dimension reduction, to build connection with the notion of sufficient dimension reduction, and to obtain the asymptotic consistency of the PLS estimator. We compare our method, both analytically and numerically, with some alternative solutions. We also illustrate the efficacy of the new method on simulations and two neuroimaging data analyses. Supplementary materials for this article are available online.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [21] Application of Partial Least-Squares Regression in Seasonal Streamflow Forecasting
    Abudu, Shalamu
    King, J. Phillip
    Pagano, Thomas C.
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2010, 15 (08) : 612 - 623
  • [22] Optimization of pulsed thermography inspection by partial least-squares regression
    Lopez, Fernando
    Ibarra-Castanedo, Clemente
    Nicolau, Vicente de Paulo
    Maldague, Xavier
    [J]. NDT & E INTERNATIONAL, 2014, 66 : 128 - 138
  • [23] THE GEOMETRY OF 2-BLOCK PARTIAL LEAST-SQUARES REGRESSION
    PHATAK, A
    REILLY, PM
    PENLIDIS, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1992, 21 (06) : 1517 - 1553
  • [24] PARTIAL LEAST-SQUARES REGRESSION AND FUZZY CLUSTERING - A JOINT APPROACH
    JACOBSEN, T
    KOLSET, K
    VOGT, NB
    [J]. MIKROCHIMICA ACTA, 1986, 2 (1-6): : 125 - 138
  • [25] Interpretation of partial least-squares regression models with VARIMAX rotation
    Wang, HW
    Liu, Q
    Tu, YP
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (01) : 207 - 219
  • [26] Extreme partial least-squares
    Bousebata, Meryem
    Enjolras, Geoffroy
    Girard, Stephane
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 194
  • [27] IMPLEMENTING PARTIAL LEAST-SQUARES
    DENHAM, MC
    [J]. STATISTICS AND COMPUTING, 1995, 5 (03) : 191 - 202
  • [28] AN INTERPRETATION OF PARTIAL LEAST-SQUARES
    GARTHWAITE, PH
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) : 122 - 127
  • [29] GENETIC PARTIAL LEAST-SQUARES
    ROGERS, D
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 148 - COMP
  • [30] CONTINUUM REGRESSION - CROSS-VALIDATED SEQUENTIALLY CONSTRUCTED PREDICTION EMBRACING ORDINARY LEAST-SQUARES, PARTIAL LEAST-SQUARES AND PRINCIPAL COMPONENTS REGRESSION
    STONE, M
    BROOKS, RJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1990, 52 (02): : 237 - 269