Interpretation of partial least-squares regression models with VARIMAX rotation

被引:16
|
作者
Wang, HW
Liu, Q
Tu, YP
机构
[1] Beihang Univ, Sch Econ & Management, Beijing 100083, Peoples R China
[2] Beijing Univ, Sch Mech Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
partial least-squares regression; factor subspace; VARIMAX rotation; factor analysis;
D O I
10.1016/j.csda.2003.12.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The VARIMAX rotation for factor analysis is used to orthogonally transform the factor subspace, resulting from partial least-square regression (PLSR). If the factors are nearly orthogonal, the transformation may help to interpret the physical meaning of each factor without altering the results of a PLSR model. A case study shows that after the VARIMAX rotation, the loading matrix satisfies "the simple structure criterion" and improves its explanatory ability. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 50 条