Application of Partial Least-Squares Regression in Seasonal Streamflow Forecasting

被引:15
|
作者
Abudu, Shalamu [1 ]
King, J. Phillip [1 ]
Pagano, Thomas C. [2 ]
机构
[1] New Mexico State Univ, Dept Civil Engn, Las Cruces, NM 88003 USA
[2] CSIRO, Land & Water Div, Highett, Vic 3190, Australia
关键词
Streamflow; Forecasting; Regression models; Validation; Precipitation; Temperature; WESTERN; CLIMATE; MODEL;
D O I
10.1061/(ASCE)HE.1943-5584.0000216
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The application of partial least-squares regression (PLSR) in seasonal streamflow forecasting was investigated using snow water equivalent, precipitation, temperature from automatic Snow Telemetry sites, and previous flow conditions as input variables. The forecast performance of PLSR models was compared to principal components regression (PCR) models as well as to the Natural Resources Conservation Service (NRCS) official forecasts in three Rio Grande watersheds including the Rio Grande Headwater Basin, Conejos River Basin in Colorado, and Rio Grande Basin above Elephant Butte Reservoir, New Mexico. The results indicated that using a correlation-weighted precipitation index is a relatively effective method in both improving forecast accuracy and developing relatively parsimonious regression models. In comparison of PLSR and PCR, similar forecast accuracies were obtained for both methods in jackknife cross validation and the test period (2003-2007) although PLSR has higher calibration coefficient of determination (R-2) and can reach its minimal prediction error with a smaller number of components than PCR. The comparison with NRCS official forecasts showed that the application of PLSR in seasonal streamflow forecasting is promising. This approach could be combined into NRCS's operational forecasting environment for possible forecast improvement.
引用
收藏
页码:612 / 623
页数:12
相关论文
共 50 条
  • [1] Kernel partial least-squares regression
    Bai Yifeng
    Xiao Han
    Yu Long
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1231 - +
  • [2] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    [J]. ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [4] Streamflow forecasting using least-squares support vector machines
    Shabri, Ani
    Suhartono
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2012, 57 (07): : 1275 - 1293
  • [5] Orthogonal Nonlinear partial least-squares regression
    Doymaz, F
    Palazoglu, A
    Romagnoli, JA
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (23) : 5836 - 5849
  • [6] PoLiSh - smoothed partial least-squares regression
    Rutledge, DN
    Barros, A
    Delgadillo, I
    [J]. ANALYTICA CHIMICA ACTA, 2001, 446 (1-2) : 281 - 296
  • [7] Partial least-squares Regression with Unlabeled Data
    Gujral, Paman
    Wise, Barry
    Amrhein, Michael
    Bonvin, Dominique
    [J]. PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 102 - 105
  • [8] A TEST OF SIGNIFICANCE FOR PARTIAL LEAST-SQUARES REGRESSION
    WAKELING, IN
    MORRIS, JJ
    [J]. JOURNAL OF CHEMOMETRICS, 1993, 7 (04) : 291 - 304
  • [9] RECURSIVE ALGORITHM FOR PARTIAL LEAST-SQUARES REGRESSION
    HELLAND, K
    BERNTSEN, HE
    BORGEN, OS
    MARTENS, H
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1992, 14 (1-3) : 129 - 137
  • [10] A REFORMULATION OF THE PARTIAL LEAST-SQUARES REGRESSION ALGORITHM
    YOUNG, PJ
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01): : 225 - 230