IMPROVING UNSUPERVISED FLOOD DETECTION WITH SPATIO-TEMPORAL CONTEXT ON HJ-1B CCD DATA

被引:3
|
作者
Liu, Xiaoyi [1 ,2 ,4 ]
Li, Jiancheng [3 ]
Sahli, Hichem [4 ,5 ]
Meng, Yu [1 ]
Huang, Qingqing [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Highway Engn Consulting Corp, Beijing 100097, Peoples R China
[4] Vrije Univ Brussel, Dept Elect Informat, Pleinlaan 2, B-1050 Brussels, Belgium
[5] IMEC, Kepeldreef 75, B-3001 Heverlee, Belgium
基金
中国国家自然科学基金;
关键词
Flood detection; anomaly detection; spatio-temporal context; histogram thresholding; HJ CCD data; OPEN WATER FEATURES; CLASSIFICATION ACCURACY; INDEX NDWI;
D O I
10.1109/IGARSS.2016.7730147
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The study of flood detection is significant to human life and social economy. In this paper, a completely unsupervised flood detection approach is presented, which combines spatio-temporal context and histogram thresholding. A global thresholding algorithm can be used in most of the cases to distinguish flood from non-flood pixels, but it may not distinguish local grey-level changes when the method is unsupervised. In this work, we introduce a kind of local context information to improve the results. A statistical model is used to establish the spatial relationships between each pixel and its surrounding regions, then a confidence map is computed. If the context structure changes significantly, the pixel is then considered potentially abnormal. Experimental investigations performed on HJ-1B CCD data from Northeast China during large-scale flooding in August 2013 showed higher precision of the proposed approach.
引用
收藏
页码:4402 / 4405
页数:4
相关论文
共 50 条
  • [1] Cloud and Snow Discrimination for CCD Images of HJ-1A/B Constellation Based on Spectral Signature and Spatio-Temporal Context
    Bian, Jinhu
    Li, Ainong
    Liu, Qiannan
    Huang, Chengquan
    REMOTE SENSING, 2016, 8 (01)
  • [2] Unsupervised Anomaly Detection in Spatio-Temporal Stream Network Sensor Data
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M.
    Peterson, Erin E.
    McGree, James
    Villa, Cesar A.
    Leigh, Catherine
    Turner, Ryan
    Roberts, Cameron
    Mengersen, Kerrie
    Water Resources Research, 2024, 60 (11)
  • [3] Spatio-Temporal Frequency Domain Analysis of PMU Data for Unsupervised Event Detection
    Senaratne, Dilan
    Kim, Jinsub
    Cotilla-Sanchez, Eduardo
    2021 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2021,
  • [4] Conversation Group Detection With Spatio-Temporal Context
    Tan, Stephanie
    Tax, David M. J.
    Hung, Hayley
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, ICMI 2022, 2022, : 170 - 180
  • [5] Spatio-temporal context for improving sentiment analysis accuracy
    Naji, Maryame
    Daoudi, Najima
    Ajhoun, Rachida
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2018, : 390 - 395
  • [6] VALIDATION FOR THE ABSOLUTE RADIOMETRIC CALIBRATION OF THE HJ-1B CCD SENSORS OF CHINA
    Jiang, Hongbo
    Qin, Qiming
    Li, Jun
    Zhao, Shaohua
    Dong, Heng
    Yuan, Weilin
    Cui, Rongbo
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2876 - 2879
  • [7] A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data
    Karadayi, Yildiz
    Aydin, Mehmet N.
    Ogrenci, A. Selcuk
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [8] A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data
    Lin, Lei
    Meng, Yu
    Yue, Anzhi
    Yuan, Yuan
    Liu, Xiaoyi
    Chen, Jingbo
    Zhang, Mengmeng
    Chen, Jiansheng
    REMOTE SENSING, 2016, 8 (05):
  • [9] LANDSLIDE CHANGE DETECTION BASED ON SPATIO-TEMPORAL CONTEXT
    Huang Qingqing
    Meng Yu
    Chen Jingbo
    Yue Anzhi
    Lin Lei
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1095 - 1098
  • [10] 基于HJ-1B/CCD地表反照率的估算
    王寸婷
    张友静
    钱志奇
    陈静欣
    曹明
    地理与地理信息科学, 2013, (05) : 12 - 16