IMPROVING UNSUPERVISED FLOOD DETECTION WITH SPATIO-TEMPORAL CONTEXT ON HJ-1B CCD DATA

被引:3
|
作者
Liu, Xiaoyi [1 ,2 ,4 ]
Li, Jiancheng [3 ]
Sahli, Hichem [4 ,5 ]
Meng, Yu [1 ]
Huang, Qingqing [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Highway Engn Consulting Corp, Beijing 100097, Peoples R China
[4] Vrije Univ Brussel, Dept Elect Informat, Pleinlaan 2, B-1050 Brussels, Belgium
[5] IMEC, Kepeldreef 75, B-3001 Heverlee, Belgium
基金
中国国家自然科学基金;
关键词
Flood detection; anomaly detection; spatio-temporal context; histogram thresholding; HJ CCD data; OPEN WATER FEATURES; CLASSIFICATION ACCURACY; INDEX NDWI;
D O I
10.1109/IGARSS.2016.7730147
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The study of flood detection is significant to human life and social economy. In this paper, a completely unsupervised flood detection approach is presented, which combines spatio-temporal context and histogram thresholding. A global thresholding algorithm can be used in most of the cases to distinguish flood from non-flood pixels, but it may not distinguish local grey-level changes when the method is unsupervised. In this work, we introduce a kind of local context information to improve the results. A statistical model is used to establish the spatial relationships between each pixel and its surrounding regions, then a confidence map is computed. If the context structure changes significantly, the pixel is then considered potentially abnormal. Experimental investigations performed on HJ-1B CCD data from Northeast China during large-scale flooding in August 2013 showed higher precision of the proposed approach.
引用
收藏
页码:4402 / 4405
页数:4
相关论文
共 50 条
  • [41] Efficient Algorithms for Flock Detection in Large Spatio-Temporal Data
    Mhatre, Jui
    Agrawal, Harsha
    Sen, Sumit
    BIG DATA ANALYTICS (BDA 2019), 2019, 11932 : 307 - 323
  • [42] ADVERSARIAL ANOMALY DETECTION FOR MARKED SPATIO-TEMPORAL STREAMING DATA
    Zhu, Shixiang
    Yuchi, Henry Shaowu
    Xie, Yao
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8921 - 8925
  • [43] 基于Terra/MODIS数据的HJ-1B/CCD1交叉定标方法研究
    徐磊
    马灵玲
    胡坚
    唐伶俐
    遥感信息, 2011, (02) : 26 - 31
  • [44] Spatio-Temporal Anomaly Detection for Industrial Robots through Prediction in Unsupervised Feature Space
    Munawar, Asim
    Vinayavekhin, Phongtharin
    De Magistris, Giovanni
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 1017 - 1025
  • [45] Transformer-based Spatio-Temporal Unsupervised Traffic Anomaly Detection in Aerial Videos
    Tran T.M.
    Bui D.C.
    Nguyen T.V.
    Nguyen K.
    IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (09) : 1 - 1
  • [46] 基于高程分层方法的HJ-1B CCD2影像大气校正
    石锋
    沙晋明
    张友水
    刘霞
    遥感技术与应用, 2011, 26 (06) : 775 - 781
  • [47] On the consistency of HJ-1A CCD1 and Terra/MODIS measurements for improved spatio-temporal monitoring of inland water: a case in Poyang Lake
    Li, Jian
    Chen, Xiaoling
    Tian, Liqiao
    Ding, Jing
    Song, Qingjun
    Yu, Zhifeng
    REMOTE SENSING LETTERS, 2015, 6 (05) : 351 - 359
  • [48] Detection of the urban heat island in Beijing using HJ-1B satellite imagery
    Yang Jun
    Gong Peng
    Zhou JinXing
    Huang HuaBing
    Wang Lei
    SCIENCE CHINA-EARTH SCIENCES, 2010, 53 : 67 - 73
  • [49] 基于浓密植被法的HJ-1B星CCD影像大气校正
    石锋
    沙晋明
    高文兰
    福建师范大学学报(自然科学版), 2012, 28 (03) : 72 - 78
  • [50] Detection of the urban heat island in Beijing using HJ-1B satellite imagery
    YANG Jun1
    2 State Key Laboratory of Remote Sensing Science
    3 Institute of Desertification Studies
    China
    Science China Earth Sciences, 2010, (S1) : 67 - 73