A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

被引:16
|
作者
Lin, Lei [1 ,2 ]
Meng, Yu [1 ]
Yue, Anzhi [1 ]
Yuan, Yuan [1 ,2 ]
Liu, Xiaoyi [1 ,2 ]
Chen, Jingbo [1 ]
Zhang, Mengmeng [3 ]
Chen, Jiansheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
forest fire detection; spatio-temporal model (STM); thermal infrared; HJ-1B; DETECTION ALGORITHM; MODIS; VALIDATION; SENSORS; IMAGERY; SEVIRI; MSG;
D O I
10.3390/rs8050403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation between an inspected pixel and its neighboring pixels is considered, which can mitigate adverse impacts of spatial heterogeneity on background intensity predictions. The integration of spatial contextual information and temporal information makes it a more robust model for anomaly detection. The proposed algorithm was applied to a forest fire in 2009 in the Yinanhe forest, Heilongjiang province, China, using two-month HJ-1B infrared camera sensor (IRS) images. A comparison of detection results demonstrate that the proposed algorithm described in this paper are useful to represent the spatio-temporal information contained in multi-temporal remotely sensed data, and the STM detection method can be used to obtain a higher detection accuracy than the optimized contextual algorithm.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Spectral Spatio-Temporal Fire Model for Video Fire Detection
    Wu, Zhaohui
    Song, Tao
    Wu, Xiaobo
    Shao, Xuqiang
    Liu, Yan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (05)
  • [2] Integrated spatio-temporal data mining for forest fire prediction
    Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
    不详
    Trans. GIS, 2008, 5 (591-611): : 591 - 611
  • [3] Detection of Australian southeast forest fire using HJ satellite
    Li, Jiaguo
    Gu, Xingfa
    Yu, Tao
    Wei, Bin
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2010, 36 (10): : 1221 - 1224
  • [4] Study on Spatio-Temporal data model of forest resource
    Xia, Kai
    Li, Wei
    Gao, Ping
    GEOINFORMATICS 2008 AND JOINT CONFERENCE ON GIS AND BUILT ENVIRONMENT: ADVANCED SPATIAL DATA MODELS AND ANALYSES, PARTS 1 AND 2, 2009, 7146
  • [5] A SPATIO-TEMPORAL AUTOCORRELATION CHANGE DETECTION APPROACH USING HYPER-TEMPORAL SATELLITE DATA
    Kleynhans, W.
    Salmon, B. P.
    Wessels, K. J.
    Olivier, J. C.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3459 - 3462
  • [6] A NOVEL SPATIO-TEMPORAL CHANGE DETECTION APPROACH USING HYPER-TEMPORAL SATELLITE DATA
    Kleynhans, W.
    Salmon, B. P.
    Wessels, K. J.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [7] Spatio-Temporal Agnostic Deep Learning Modeling of Forest Fire Prediction Using Weather Data
    Mutakabbir, Abdul
    Lung, Chung-Horng
    Ajila, Samuel A.
    Zaman, Marzia
    Naik, Kshirasagar
    Purcell, Richard
    Sampalli, Srinivas
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 346 - 351
  • [8] PEATLAND FIRE DETECTION USING SPATIO-TEMPORAL DATA MINING ANALYSIS IN KALIMANTAN, INDONESIA
    Syaufina, L.
    Sitanggang, I. S.
    JOURNAL OF TROPICAL FOREST SCIENCE, 2018, 30 (02) : 154 - 162
  • [9] An Improved Algorithm for Forest Fire Detection Using HJ Data
    Wang, S. D.
    Miao, L. L.
    Peng, G. X.
    18TH BIENNIAL ISEM CONFERENCE ON ECOLOGICAL MODELLING FOR GLOBAL CHANGE AND COUPLED HUMAN AND NATURAL SYSTEM, 2012, 13 : 140 - 150
  • [10] Forest forecast model from spatio-temporal analysis of a satellite image sequence
    Mezzadri-Centeno, T
    Selleron, G
    Desachy, J
    27TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, PROCEEDINGS: INFORMATION FOR SUSTAINABILITY, 1998, : 656 - 659