A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

被引:16
|
作者
Lin, Lei [1 ,2 ]
Meng, Yu [1 ]
Yue, Anzhi [1 ]
Yuan, Yuan [1 ,2 ]
Liu, Xiaoyi [1 ,2 ]
Chen, Jingbo [1 ]
Zhang, Mengmeng [3 ]
Chen, Jiansheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
forest fire detection; spatio-temporal model (STM); thermal infrared; HJ-1B; DETECTION ALGORITHM; MODIS; VALIDATION; SENSORS; IMAGERY; SEVIRI; MSG;
D O I
10.3390/rs8050403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation between an inspected pixel and its neighboring pixels is considered, which can mitigate adverse impacts of spatial heterogeneity on background intensity predictions. The integration of spatial contextual information and temporal information makes it a more robust model for anomaly detection. The proposed algorithm was applied to a forest fire in 2009 in the Yinanhe forest, Heilongjiang province, China, using two-month HJ-1B infrared camera sensor (IRS) images. A comparison of detection results demonstrate that the proposed algorithm described in this paper are useful to represent the spatio-temporal information contained in multi-temporal remotely sensed data, and the STM detection method can be used to obtain a higher detection accuracy than the optimized contextual algorithm.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [31] Examining Spatio-Temporal Change Detection in the Indus River Delta with the Help of Satellite Data
    Gohar A. Mahar
    Nayyer A. Zaigham
    Arabian Journal for Science and Engineering, 2015, 40 : 1933 - 1946
  • [32] Fire Detection Based on Fractal Analysis and Spatio-Temporal Features
    Monir Torabian
    Hossein Pourghassem
    Homayoun Mahdavi-Nasab
    Fire Technology, 2021, 57 : 2583 - 2614
  • [33] Fire Detection Based on Fractal Analysis and Spatio-Temporal Features
    Torabian, Monir
    Pourghassem, Hossein
    Mahdavi-Nasab, Homayoun
    FIRE TECHNOLOGY, 2021, 57 (05) : 2583 - 2614
  • [34] IMPROVING UNSUPERVISED FLOOD DETECTION WITH SPATIO-TEMPORAL CONTEXT ON HJ-1B CCD DATA
    Liu, Xiaoyi
    Li, Jiancheng
    Sahli, Hichem
    Meng, Yu
    Huang, Qingqing
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4402 - 4405
  • [35] Spatio-Temporal Detection of Cumulonimbus Clouds in Infrared Satellite Images
    Dorfman, Ron
    Wagner, Etai
    Lahav, Almog
    Amar, Alon
    Talmon, Ronen
    Halle, Yaron
    2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [36] A deep learning model using geostationary satellite data for forest fire detection with reduced detection latency
    Kang, Yoojin
    Jang, Eunna
    Im, Jungho
    Kwon, Chungeun
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 2019 - 2035
  • [37] A Spatio-Temporal Data Model of Geographic Entities
    Gong, Qi
    Guo, Ning
    Xiong, Wei
    Chen, Luo
    Jing, Ning
    2018 26TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS (GEOINFORMATICS 2018), 2018,
  • [38] A Hybrid Spatio-temporal Data Model for Mines
    Xiong, Shumin
    Wang, Liguan
    Tan, Zhenghua
    Huang, Junxin
    Chen, Jianhong
    Su, Li
    Jin, Lingling
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [39] A physical data model for spatio-temporal objects
    de Jong, Kor
    Karssenberg, Derek
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 122
  • [40] Spatio-Temporal Characterization of Fire Using MODIS Data (2000-2020) in Colombia
    Bolano-Diaz, Sindy
    Camargo-Caicedo, Yiniva
    Soro, Tionhonkele D.
    N'Dri, Aya Brigitte
    Bolano-Ortiz, Tomas R.
    FIRE-SWITZERLAND, 2022, 5 (05):