A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data

被引:16
|
作者
Lin, Lei [1 ,2 ]
Meng, Yu [1 ]
Yue, Anzhi [1 ]
Yuan, Yuan [1 ,2 ]
Liu, Xiaoyi [1 ,2 ]
Chen, Jingbo [1 ]
Zhang, Mengmeng [3 ]
Chen, Jiansheng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
来源
REMOTE SENSING | 2016年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
forest fire detection; spatio-temporal model (STM); thermal infrared; HJ-1B; DETECTION ALGORITHM; MODIS; VALIDATION; SENSORS; IMAGERY; SEVIRI; MSG;
D O I
10.3390/rs8050403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire detection based on multi-temporal remote sensing data is an active research field. However, multi-temporal detection processes are usually complicated because of the spatial and temporal variability of remote sensing imagery. This paper presents a spatio-temporal model (STM) based forest fire detection method that uses multiple images of the inspected scene. In STM, the strong correlation between an inspected pixel and its neighboring pixels is considered, which can mitigate adverse impacts of spatial heterogeneity on background intensity predictions. The integration of spatial contextual information and temporal information makes it a more robust model for anomaly detection. The proposed algorithm was applied to a forest fire in 2009 in the Yinanhe forest, Heilongjiang province, China, using two-month HJ-1B infrared camera sensor (IRS) images. A comparison of detection results demonstrate that the proposed algorithm described in this paper are useful to represent the spatio-temporal information contained in multi-temporal remotely sensed data, and the STM detection method can be used to obtain a higher detection accuracy than the optimized contextual algorithm.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [41] Pothole detection using spatio-temporal saliency
    Jang, Dong-Won
    Park, Rae-Hong
    IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (09) : 605 - 612
  • [42] Diagnosing the average spatio-temporal impact of convective systems - Part 2: A model intercomparison using satellite data
    Johnston, M. S.
    Eliasson, S.
    Eriksson, P.
    Forbes, R. M.
    Gettelman, A.
    Raisanen, P.
    Zelinka, M. D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (16) : 8701 - 8721
  • [43] A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data
    Xie, Zixi
    Song, Weiguo
    Ba, Rui
    Li, Xiaolian
    Xia, Long
    REMOTE SENSING, 2018, 10 (12):
  • [44] A Shape-based Approach to Spatio-Temporal Data Analysis using Satellite Imagery
    Baheti, Darpan
    Rajan, K. S.
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 439 - 448
  • [45] A Hybrid Spatio-Temporal Prediction Model for Solar Photovoltaic Generation Using Numerical Weather Data and Satellite Images
    Kim, Bowoo
    Suh, Dongjun
    REMOTE SENSING, 2020, 12 (22) : 1 - 21
  • [46] Spatio-Temporal Distribution of Aerosol and Cloud Properties over Sindh Using MODIS Satellite Data and a HYSPLIT Model
    Sharif, Fozia
    Alam, Khan
    Afsar, Sheeba
    AEROSOL AND AIR QUALITY RESEARCH, 2015, 15 (02) : 657 - 672
  • [47] Spatio-temporal data classification using CVNNs
    Zahradnik, Jakub
    Skrbek, Miroslav
    SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 81 - 88
  • [48] A new spatio-temporal MRF model for the detection of missing data in image sequences
    Chong, MN
    Liu, P
    Goh, WB
    Krishnan, D
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2977 - 2980
  • [49] Improving Fire Services using Spatio-Temporal Analysis: Fire Incidents in Manila
    Balahadia, Francis F.
    Trillanes, Arlene O.
    2017 IEEE REGION 10 INTERNATIONAL SYMPOSIUM ON TECHNOLOGIES FOR SMART CITIES (IEEE TENSYMP 2017), 2017,
  • [50] Assessment of deforestation in sub-tropical forest using spatio-temporal landsat data
    Raza, Syed Hassan
    Ashraf, Muhammad Irfan
    Imran, Areeba Binte
    Khan, Ishfaq Ahmad
    Shah, Syed Ghayoor Ali
    REVISTA CUBANA DE CIENCIAS FORESTALES, 2021, 9 (02): : 205 - 225