Robust Deep Residual Shrinkage Networks for Online Fault Classification

被引:0
|
作者
Salimy, Alireza [1 ]
Mitiche, Imene [1 ]
Boreham, Philip [2 ]
Nesbitt, Alan [1 ]
Morison, Gordon [1 ]
机构
[1] Glasgow Caledonian Univ, Sch Comp Engn & Built Environm, Glasgow, Lanark, Scotland
[2] Doble Engn, Innovat Ctr Online Syst, Bere Regis, England
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, a novel approach to improve signal classification in the presence of noise is presented. Using Stock-well transforms for feature extraction on time-series electromagnetic interference data and deep residual neural networks, containing thresholding functions (shrinkage functions) as non-linear transformation layers for classification. Thresholding functions are commonly used for signal de-noising. Setting thresholds for optimal functionality is often complex and requires expertise, this paper will investigate learned methods of threshold selection along with alternate thresholding functions. Using deep learning methods to select thresholds reduces the dependency on experts for the use of thresholding functions for de-noising and allows for adaptation to alternate noise environments. This paper proposed the novel application of two different threshold functions and introduces an architecture update for learning the threshold parameters for classification in the presence of noise. Several experiments are carried out to compare the performance of the systems with varying signal-to-noise ratio data sets taken from real-world operational high-voltage assets. Experimental results show that the proposed approaches using both Garrote and Firm thresholding achieved improved performance increases over utilizing soft thresholding within deep shrinkage networks in low signal-to-noise ratios.
引用
收藏
页码:1691 / 1695
页数:5
相关论文
共 50 条
  • [1] Dynamic Noise Reduction with Deep Residual Shrinkage Networks for Online Fault Classification
    Salimy, Alireza
    Mitiche, Imene
    Boreham, Philip
    Nesbitt, Alan
    Morison, Gordon
    [J]. SENSORS, 2022, 22 (02)
  • [2] Deep Residual Shrinkage Networks for Fault Diagnosis
    Zhao, Minghang
    Zhong, Shisheng
    Fu, Xuyun
    Tang, Baoping
    Pecht, Michael
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (07) : 4681 - 4690
  • [3] Rolling Bearing Fault Diagnosis Using Improved Deep Residual Shrinkage Networks
    Zhang, Zhijin
    Li, He
    Chen, Lei
    Han, Ping
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [4] Gearbox Fault Diagnosis Method in Noisy Environments Based on Deep Residual Shrinkage Networks
    Cao, Jianhui
    Zhang, Jianjie
    Jiao, Xinze
    Yu, Peibo
    Zhang, Baobao
    [J]. SENSORS, 2024, 24 (14)
  • [5] A Photovoltaic System Fault Identification Method Based on Improved Deep Residual Shrinkage Networks
    Cui, Fengxin
    Tu, Yanzhao
    Gao, Wei
    [J]. ENERGIES, 2022, 15 (11)
  • [6] Deep Residual Shrinkage Networks with Self-Adaptive Slope Thresholding for Fault Diagnosis
    Zhang, Zhijin
    Li, He
    Chen, Lei
    [J]. PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 236 - 239
  • [7] A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks
    Tong, Jinyu
    Tang, Shiyu
    Wu, Yi
    Pan, Haiyang
    Zheng, Jinde
    [J]. MEASUREMENT, 2023, 206
  • [8] Robust Adversarial Attacks on Imperfect Deep Neural Networks in Fault Classification
    Jiang, Xiaoyu
    Kong, Xiangyin
    Zheng, Junhua
    Ge, Zhiqiang
    Zhang, Xinmin
    Song, Zhihuan
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024,
  • [9] Bearing fault diagnosis under variable working conditions based on deep residual shrinkage networks
    Chi, Fulin
    Yang, Xinyu
    Shao, Siyu
    Zhang, Qiang
    Zhao, Yuwei
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (04): : 1146 - 1156
  • [10] Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis
    Xu, Zongtang
    Ma, Yumei
    Pan, Zhenkuan
    Zheng, Xiaoyang
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1608 - 1613