Using the Kullback-Leibler Divergence to Combine Image Priors in Super-Resolution Image Reconstruction

被引:14
|
作者
Villena, Salvador [1 ]
Vega, Miguel [1 ]
Derin Babacan, S. [2 ]
Molina, Rafael [3 ]
Katsaggelos, Aggelos K. [2 ]
机构
[1] Univ Granada, Dept Lenguajes & Sistemas Informat, E-18071 Granada, Spain
[2] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[3] Univ Granada, Dept Ciencias Comput Inteligen Artificial, E-18071 Granada, Spain
关键词
Super resolution; combination of priors; variational methods; parameter estimation; Bayesian methods; PARAMETER-ESTIMATION; RESOLUTION;
D O I
10.1109/ICIP.2010.5650444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the combination of image priors in Super Resolution (SR) image reconstruction. Taking into account that each combination of a given observation model and a prior model produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational posterior distribution approximation on each posterior will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimizes a linear convex combination of the Kullback-Leibler divergences associated with each posterior distribution. We find this distribution in closed form and also relate the proposed approach to other prior combination methods in the literature. The estimated HR images are compared with images provided by other SR reconstruction methods.
引用
收藏
页码:893 / 896
页数:4
相关论文
共 50 条
  • [41] Minimax Regret on Patterns Using Kullback-Leibler Divergence Covering
    Tang, Jennifer
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178
  • [42] DIAGNOSIS OF SENSOR PRECISION DEGRADATION USING KULLBACK-LEIBLER DIVERGENCE
    Ji, Hongquan
    He, Xiao
    Zhou, Donghua
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 96 (02): : 434 - 443
  • [43] SAR Image Segmentation Based on Kullback-Leibler Distance of Edgeworth
    Hu, Lei
    Ji, Yan
    Li, Yang
    Gao, Feng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING-PCM 2010, PT I, 2010, 6297 : 549 - 557
  • [44] Comparing Conformational Ensembles Using the Kullback-Leibler Divergence Expansion
    McClendon, Christopher L.
    Hua, Lan
    Barreiro, Gabriela
    Jacobson, Matthew P.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (06) : 2115 - 2126
  • [45] HIGH DIMENSIONAL KULLBACK-LEIBLER DIVERGENCE FOR GRASSLAND MANAGEMENT PRACTICES CLASSIFICATION FROM HIGH RESOLUTION SATELLITE IMAGE TIME SERIES
    Lopes, Mailys
    Fauvel, Mathieu
    Girard, Stephane
    Sheeren, David
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3342 - 3345
  • [46] Super-resolution image reconstruction using molecular docking
    Nayak, Rajashree
    Patra, Dipti
    Balabantaray, Bunil Ku
    IET IMAGE PROCESSING, 2020, 14 (12) : 2922 - 2936
  • [47] IMAGE PRIOR COMBINATION IN SUPER-RESOLUTION IMAGE RECONSTRUCTION
    Villena, Salvador
    Vega, Miguel
    Molina, Rafael
    Katsaggelos, Aggelos K.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 616 - 620
  • [48] Research on Image Super-Resolution Reconstruction of Optical Image
    Jiang, Aiping
    Li, Xinwei
    Gao, Han
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 236 - 243
  • [49] Super-resolution image reconstruction using the ICM algorithm
    Martins, A. L. D.
    Homem, M. R. P.
    Mascarenhas, N. D. A.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1901 - 1904
  • [50] Regularization for super-resolution image reconstruction
    Bannore, Vivek
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2006, 4252 : 36 - 46