Using the Kullback-Leibler Divergence to Combine Image Priors in Super-Resolution Image Reconstruction

被引:14
|
作者
Villena, Salvador [1 ]
Vega, Miguel [1 ]
Derin Babacan, S. [2 ]
Molina, Rafael [3 ]
Katsaggelos, Aggelos K. [2 ]
机构
[1] Univ Granada, Dept Lenguajes & Sistemas Informat, E-18071 Granada, Spain
[2] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[3] Univ Granada, Dept Ciencias Comput Inteligen Artificial, E-18071 Granada, Spain
关键词
Super resolution; combination of priors; variational methods; parameter estimation; Bayesian methods; PARAMETER-ESTIMATION; RESOLUTION;
D O I
10.1109/ICIP.2010.5650444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the combination of image priors in Super Resolution (SR) image reconstruction. Taking into account that each combination of a given observation model and a prior model produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational posterior distribution approximation on each posterior will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimizes a linear convex combination of the Kullback-Leibler divergences associated with each posterior distribution. We find this distribution in closed form and also relate the proposed approach to other prior combination methods in the literature. The estimated HR images are compared with images provided by other SR reconstruction methods.
引用
收藏
页码:893 / 896
页数:4
相关论文
共 50 条
  • [31] Super-resolution image reconstruction using multisensors
    Ching, WK
    Ng, MK
    Sze, KN
    Yau, AC
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 271 - 281
  • [32] Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback-Leibler data divergence
    Cai, Ai-Long
    Li, Lei
    Wang, Lin-Yuan
    Yan, Bin
    Zheng, Zhi-Zhong
    Zhang, Han-Ming
    Hu, Guo-En
    CHINESE PHYSICS B, 2017, 26 (07)
  • [33] DEEP MR IMAGE SUPER-RESOLUTION USING STRUCTURAL PRIORS
    Cherukuri, Venkateswararao
    Guo, Tiantong
    Schiff, Steven J.
    Monga, Vishal
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 410 - 414
  • [34] Multiresolution image registration based on Kullback-Leibler distance
    Gan, R
    Wu, J
    Chung, ACS
    Yu, SCH
    Wells, WM
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 599 - 606
  • [35] Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback-Leibler data divergence
    蔡爱龙
    李磊
    王林元
    闫镔
    郑治中
    张瀚铭
    胡国恩
    Chinese Physics B, 2017, 26 (07) : 465 - 477
  • [36] Learning based non-rigid multi-modal image registration using Kullback-Leibler divergence
    Guetter, C
    Xu, CY
    Sauer, FA
    Hornegger, J
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 2, 2005, 3750 : 255 - 262
  • [37] Fault detection in dynamic systems using the Kullback-Leibler divergence
    Xie, Lei
    Zeng, Jiusun
    Kruger, Uwe
    Wang, Xun
    Geluk, Jaap
    CONTROL ENGINEERING PRACTICE, 2015, 43 : 39 - 48
  • [38] Estimation of discrepancy of color qualia using Kullback-Leibler divergence
    Yamada, Miku
    Matsumoto, Miu
    Arakaki, Mina
    Hebishima, Hana
    Inage, Shinichi
    BIOSYSTEMS, 2023, 232
  • [39] Robust Active Stereo Vision Using Kullback-Leibler Divergence
    Wang, Yongchang
    Liu, Kai
    Hao, Qi
    Wang, Xianwang
    Lau, Daniel L.
    Hassebrook, Laurence G.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) : 548 - 563
  • [40] Local inconsistency detection using the Kullback-Leibler divergence measure
    Spineli, Loukia M.
    SYSTEMATIC REVIEWS, 2024, 13 (01)