Using the Kullback-Leibler Divergence to Combine Image Priors in Super-Resolution Image Reconstruction

被引:14
|
作者
Villena, Salvador [1 ]
Vega, Miguel [1 ]
Derin Babacan, S. [2 ]
Molina, Rafael [3 ]
Katsaggelos, Aggelos K. [2 ]
机构
[1] Univ Granada, Dept Lenguajes & Sistemas Informat, E-18071 Granada, Spain
[2] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[3] Univ Granada, Dept Ciencias Comput Inteligen Artificial, E-18071 Granada, Spain
关键词
Super resolution; combination of priors; variational methods; parameter estimation; Bayesian methods; PARAMETER-ESTIMATION; RESOLUTION;
D O I
10.1109/ICIP.2010.5650444
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is devoted to the combination of image priors in Super Resolution (SR) image reconstruction. Taking into account that each combination of a given observation model and a prior model produces a different posterior distribution of the underlying High Resolution (HR) image, the use of variational posterior distribution approximation on each posterior will produce as many posterior approximations as priors we want to combine. A unique approximation is obtained here by finding the distribution on the HR image given the observations that minimizes a linear convex combination of the Kullback-Leibler divergences associated with each posterior distribution. We find this distribution in closed form and also relate the proposed approach to other prior combination methods in the literature. The estimated HR images are compared with images provided by other SR reconstruction methods.
引用
收藏
页码:893 / 896
页数:4
相关论文
共 50 条
  • [21] Image retrieval via Kullback-Leibler divergence of patches of multiscale coefficients in the kNN framework
    Piro, Paolo
    Anthoine, Sandrine
    Debreuve, Eric
    Barlaud, Michel
    2008 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2008, : 214 - 219
  • [22] Anomaly Detection Using the Kullback-Leibler Divergence Metric
    Afgani, Mostafa
    Sinanovic, Sinan
    Haas, Harald
    ISABEL: 2008 FIRST INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMMUNICATION TECHNOLOGIES, 2008, : 197 - 201
  • [23] Android Malware Detection Using Kullback-Leibler Divergence
    Cooper, Vanessa N.
    Haddad, Hisham M.
    Shahriar, Hossain
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2014, 3 (02): : 17 - 24
  • [24] Nonlocal total variation based on symmetric Kullback-Leibler divergence for the ultrasound image despeckling
    Liang, Shujun
    Yang, Feng
    Wen, Tiexiang
    Yao, Zhewei
    Huang, Qinghua
    Ye, Chengke
    BMC MEDICAL IMAGING, 2017, 17
  • [25] An Asymptotic Test for Bimodality Using The Kullback-Leibler Divergence
    Contreras-Reyes, Javier E.
    SYMMETRY-BASEL, 2020, 12 (06):
  • [26] Estimating Kullback-Leibler Divergence Using Kernel Machines
    Ahuja, Kartik
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 690 - 696
  • [27] Optimal robust estimates using the Kullback-Leibler divergence
    Yohai, Victor J.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1811 - 1816
  • [28] Human promoter recognition using kullback-leibler divergence
    Zeng, Ja
    Cao, Xiao-Qin
    Yan, Hong
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3319 - 3325
  • [29] Super-resolution reconstruction of an image
    Elad, M
    Feuer, A
    NINETEENTH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, 1996, : 391 - 394
  • [30] Super-resolution image reconstruction
    Kang, MG
    Chaudhuri, S
    IEEE SIGNAL PROCESSING MAGAZINE, 2003, 20 (03) : 19 - 20