L1-optimal nonparametric frontier estimation via linear programming

被引:5
|
作者
Girard, S [1 ]
Iouditski, A
Nazin, AV
机构
[1] Univ Grenoble 1, LMC, IMAG, Grenoble, France
[2] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia
关键词
D O I
10.1007/s10513-005-0231-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A frontier estimation method for a set of points on a plane is proposed, being optimal in L-1-norm on a given class of beta-Holder boundary functions under beta is an element of (0, 1]. The estimator is defined as sufficiently regular linear combination of kernel functions centered in the sample points, which covers all these points and whose associated support is of minimal surface. The linear combination weights are calculated via solution of the related linear programming problem. The L-1-norm of the estimation error is demonstrated to be convergent to zero with probability one, with the optimal rate of convergence.
引用
收藏
页码:2000 / 2018
页数:19
相关论文
共 50 条
  • [1] L1-Optimal Nonparametric Frontier Estimation via Linear Programming
    S. Girard
    A. Iouditski
    A. V. Nazin
    [J]. Automation and Remote Control, 2005, 66 : 2000 - 2018
  • [2] Nonparametric frontier estimation by linear programming
    Bouchard, G
    Girard, S
    Iouditski, AB
    Nazin, AV
    [J]. AUTOMATION AND REMOTE CONTROL, 2004, 65 (01) : 58 - 64
  • [3] Nonparametric Frontier Estimation by Linear Programming
    G. Bouchard
    S. Girard
    A. B. Iouditski
    A. V. Nazin
    [J]. Automation and Remote Control, 2004, 65 : 58 - 64
  • [4] L1-optimal linear programming estimator for periodic frontier functions with Hölder continuous derivative
    A. V. Nazin
    S. Girard
    [J]. Automation and Remote Control, 2014, 75 : 2152 - 2169
  • [5] Nonparametric frontier estimation via local linear regression
    Martins-Filho, Carlos
    Yao, Feng
    [J]. JOURNAL OF ECONOMETRICS, 2007, 141 (01) : 283 - 319
  • [6] Multiple solutions to the l1-optimal control problem and its dual linear programming problem
    Alpay, ME
    Shor, MH
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) : 1089 - 1093
  • [7] l1-Optimal Newton Method for Nonlinear l1-Optimal Control Problems
    Hamada, Kiyoshi
    Yamamoto, Keitaro
    Fujimoto, Kenji
    Maruta, Ichiro
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 7443 - 7448
  • [8] Control of quantized linear systems:: an l1-optimal control approach
    Heemels, WPMH
    Siahaan, HB
    Juloski, AL
    Weiland, S
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3502 - 3507
  • [9] Stochastic L1-optimal control via forward and backward sampling
    Exarchos, Loannis
    Theodorou, Evangelos A.
    Tsiotras, Panagiotis
    [J]. SYSTEMS & CONTROL LETTERS, 2018, 118 : 101 - 108
  • [10] RATIONAL APPROXIMATION OF L1-OPTIMAL CONTROLLER
    OHTA, Y
    MAEDA, H
    KODAMA, S
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 183 : 40 - 47