Multiple solutions to the l1-optimal control problem and its dual linear programming problem

被引:0
|
作者
Alpay, ME [1 ]
Shor, MH
机构
[1] Electrosci Ind Inc, Porland, OR 97229 USA
[2] Oregon State Univ, Dept Elect & Comp Engn, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
dual linear multiple solutions; l(1)-optimal control; programming problem;
D O I
10.1109/9.763236
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper explores the consequences for the l(1)-optimal controller of the dual linear programming problem having multiple solutions, for linear time-invariant single-input/single-output systems. When the dual problem has multiple solutions, all solutions yield the same set of optimal controllers. If these multiple solutions comprise an entire face of the constraint region, there is a single optimal controller. Thus, if the constraint region is two-dimensional, the primal and dual problems cannot both have multiple solutions. An example is given with a three-dimensional constraint region where both problems have multiple solutions.
引用
收藏
页码:1089 / 1093
页数:5
相关论文
共 50 条
  • [1] Multiple solutions in linear programming problem
    Bogdan, Marcel
    [J]. 11TH INTERNATIONAL CONFERENCE INTERDISCIPLINARITY IN ENGINEERING, INTER-ENG 2017, 2018, 22 : 1063 - 1068
  • [2] L1-optimal nonparametric frontier estimation via linear programming
    Girard, S
    Iouditski, A
    Nazin, AV
    [J]. AUTOMATION AND REMOTE CONTROL, 2005, 66 (12) : 2000 - 2018
  • [3] L1-Optimal Nonparametric Frontier Estimation via Linear Programming
    S. Girard
    A. Iouditski
    A. V. Nazin
    [J]. Automation and Remote Control, 2005, 66 : 2000 - 2018
  • [4] l1-Optimal Newton Method for Nonlinear l1-Optimal Control Problems
    Hamada, Kiyoshi
    Yamamoto, Keitaro
    Fujimoto, Kenji
    Maruta, Ichiro
    [J]. 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 7443 - 7448
  • [5] Control of quantized linear systems:: an l1-optimal control approach
    Heemels, WPMH
    Siahaan, HB
    Juloski, AL
    Weiland, S
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 3502 - 3507
  • [6] LINEAR PROGRAMMING PROBLEM CONNECTED WITH OPTIMAL STATIONARY CONTROL IN A DYNAMIC DECISION PROBLEM
    PITTEL, BG
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (04): : 724 - 728
  • [7] CONTRIBUTION TO QUESTION OF DETERMINING ALL OPTIMAL SOLUTIONS OF A LINEAR PROGRAMMING PROBLEM
    REMEZ, EY
    SHTEINBE.AS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1968, 181 (03): : 550 - &
  • [10] A NONLINEAR OPTIMAL GREENHOUSE CONTROL PROBLEM SOLVED BY LINEAR-PROGRAMMING
    GUTMAN, PO
    LINDBERG, PO
    IOSLOVICH, I
    SEGINER, I
    [J]. JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 1993, 55 (04): : 335 - 351