L1-optimal nonparametric frontier estimation via linear programming

被引:5
|
作者
Girard, S [1 ]
Iouditski, A
Nazin, AV
机构
[1] Univ Grenoble 1, LMC, IMAG, Grenoble, France
[2] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia
关键词
D O I
10.1007/s10513-005-0231-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A frontier estimation method for a set of points on a plane is proposed, being optimal in L-1-norm on a given class of beta-Holder boundary functions under beta is an element of (0, 1]. The estimator is defined as sufficiently regular linear combination of kernel functions centered in the sample points, which covers all these points and whose associated support is of minimal surface. The linear combination weights are calculated via solution of the related linear programming problem. The L-1-norm of the estimation error is demonstrated to be convergent to zero with probability one, with the optimal rate of convergence.
引用
收藏
页码:2000 / 2018
页数:19
相关论文
共 50 条
  • [21] General construction and classes of explicit L1-optimal couplings
    Puccetti, Giovanni
    Rueschendorf, Ludger
    [J]. BERNOULLI, 2023, 29 (01) : 839 - 874
  • [22] Q domain optimization method for l1-optimal controllers
    Yoon, H
    Tongue, BH
    Packard, AK
    [J]. AUTOMATICA, 2000, 36 (04) : 603 - 611
  • [23] l1-optimal robust iterative learning controller design
    Moore, Kevin L.
    Verwoerd, Mark H. A.
    [J]. 2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 3881 - +
  • [24] Internal behaviour provided by nonlinear l1-optimal controllers
    Miller, DE
    Lucic, VM
    [J]. SYSTEMS & CONTROL LETTERS, 2000, 40 (05) : 305 - 315
  • [25] L1-OPTIMAL COMPENSATORS FOR CONTINUOUS-TIME SYSTEMS
    DAHLEH, MA
    PEARSON, JB
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (10) : 889 - 895
  • [26] State-space approach to l1-optimal robust tracking
    Scott, CN
    Wood, LA
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (05) : 844 - 849
  • [27] DISCRETE APPROXIMATIONS TO CONTINUOUS DENSITY-FUNCTIONS THAT ARE L1-OPTIMAL
    KATZ, D
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1983, 1 (03) : 175 - 181
  • [28] Design of l1-optimal controllers with flexible disturbance rejection level
    Cadotte, Patrick
    Mannor, Shie
    Michalska, Hannah
    Boulet, Benoit
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) : 868 - 873
  • [29] OPTIMAL ESTIMATION OF EXECUTIVE COMPENSATION BY LINEAR PROGRAMMING
    Charnes, A.
    Cooper, W. W.
    Ferguson, R. O.
    [J]. MANAGEMENT SCIENCE, 1955, 1 (02) : 138 - 151
  • [30] Nonparametric Prediction Intervals of Wind Power via Linear Programming
    Wan, Can
    Wang, Jianhui
    Lin, Jin
    Song, Yonghua
    Dong, Zhao Yang
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (01) : 1074 - 1076