Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems

被引:74
|
作者
Ma, Q [1 ]
机构
[1] City Univ London, Sch Engn & Math Sci, London EC1V 0HB, England
基金
英国工程与自然科学研究理事会;
关键词
water waves; meshless local Petrov-Galerkin method; free surface;
D O I
10.1016/j.jcp.2004.11.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the meshless local Petrov-Galerkin (MLPG) method is extended to dealing with nonlinear water wave problems. The formulation is based on general fluid governing equations and a time marching procedure. At each time step, the boundary value problem for the pressure is solved using the MLPG method; and the velocity and position of nodes are updated by numerical integration. The newly-extended method is applied to simulating water waves generated by a wave maker and good agreement with analytical solutions and finite element results is presented. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:611 / 625
页数:15
相关论文
共 50 条
  • [1] The Meshless Local Petrov-Galerkin Method in Two-Dimensional Electromagnetic Wave Analysis
    Nicomedes, Williams L.
    Mesquita, Renato Cardoso
    Moreira, Fernando Jose da Silva
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1957 - 1968
  • [2] Improved meshless local Petrov-Galerkin method for two-dimensional potential problems
    Zheng Bao-Jing
    Dai Bao-Dong
    [J]. ACTA PHYSICA SINICA, 2010, 59 (08) : 5182 - 5189
  • [3] Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems
    Wu XueHong
    Shen ShengPing
    Tao WenQuan
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 22 (01): : 65 - 76
  • [4] Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems
    Wu, XueHong
    Shen, ShengPing
    Tao, WenQuan
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2007, 22 (01): : 65 - 76
  • [5] A meshless local Petrov-Galerkin method for geometrically nonlinear problems
    Xiong, YB
    Long, SY
    Hu, DA
    Li, GY
    [J]. ACTA MECHANICA SOLIDA SINICA, 2005, 18 (04) : 348 - 356
  • [6] A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS
    Xiong Yuanbo Long Shuyao Hu De’an Li Guangyao Department of Engineering Mechanics
    [J]. Acta Mechanica Solida Sinica, 2005, (04) : 348 - 356
  • [7] A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems
    Chen, T
    Raju, IS
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (41-42) : 4533 - 4550
  • [8] The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems
    Yang Xiu-Li
    Dai Bao-Dong
    Zhang Wei-Wei
    [J]. CHINESE PHYSICS B, 2012, 21 (10)
  • [9] The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems
    杨秀丽
    戴保东
    张伟伟
    [J]. Chinese Physics B, 2012, (10) : 53 - 59
  • [10] MESHLESS LOCAL PETROV-GALERKIN METHOD FOR NONLINEAR HEAT CONDUCTION PROBLEMS
    Thakur, Harishchandra
    Singh, K. M.
    Sahoo, P. K.
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2009, 56 (05) : 393 - 410