A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems

被引:38
|
作者
Chen, T [1 ]
Raju, IS [1 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
finite element method; meshless local Petrov-Galerkin (MLPG) method; coupling method; blending functions; potential problems;
D O I
10.1016/S0045-7825(03)00421-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A coupled finite element (FE) and meshless local Petrov-Galerkin (MLPG) method for analyzing two-dimensional potential problems is presented in this paper. A transition region is created between the FE and MLPG regions. The transition region blends the trial and test functions of the FE and MLPG regions. The trial function blending is achieved using a new coupling technique similar to the 'Coons patch' method that is widely used in computer aided geometric design. By using the technique, trial functions, which are similar to the isoparametric "serendipity" element, of the transition element can be constructed. The test function blending is achieved by using either the FE or MLPG test functions on the nodes. Several potential problems are used to establish the validity of the coupled method. 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:4533 / 4550
页数:18
相关论文
共 50 条
  • [1] Improved meshless local Petrov-Galerkin method for two-dimensional potential problems
    Zheng Bao-Jing
    Dai Bao-Dong
    [J]. ACTA PHYSICA SINICA, 2010, 59 (08) : 5182 - 5189
  • [2] A coupled finite element and meshless local Petrov-Galerkin method for large deformation problems
    Li, Di
    Lu, Zhiyong
    Kang, Wenqian
    [J]. MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 3777 - 3780
  • [3] The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems
    Yang Xiu-Li
    Dai Bao-Dong
    Zhang Wei-Wei
    [J]. CHINESE PHYSICS B, 2012, 21 (10)
  • [4] The complex variable meshless local Petrov-Galerkin method of solving two-dimensional potential problems
    杨秀丽
    戴保东
    张伟伟
    [J]. Chinese Physics B, 2012, (10) : 53 - 59
  • [5] Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems
    Ma, Q
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) : 611 - 625
  • [6] Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems
    Wu XueHong
    Shen ShengPing
    Tao WenQuan
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 22 (01): : 65 - 76
  • [7] Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems
    Wu, XueHong
    Shen, ShengPing
    Tao, WenQuan
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2007, 22 (01): : 65 - 76
  • [8] A Finite Element enrichment technique by the Meshless Local Petrov-Galerkin method
    Ferronato, M.
    Mazzia, A.
    Pini, G.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 62 (02): : 205 - 223
  • [9] The Meshless Local Petrov-Galerkin Method in Two-Dimensional Electromagnetic Wave Analysis
    Nicomedes, Williams L.
    Mesquita, Renato Cardoso
    Moreira, Fernando Jose da Silva
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1957 - 1968
  • [10] Finite volume meshless local Petrov-Galerkin method in elastodynamic problems
    Moosavi, M. R.
    Khelil, A.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (8-9) : 1016 - 1021