Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems

被引:74
|
作者
Ma, Q [1 ]
机构
[1] City Univ London, Sch Engn & Math Sci, London EC1V 0HB, England
基金
英国工程与自然科学研究理事会;
关键词
water waves; meshless local Petrov-Galerkin method; free surface;
D O I
10.1016/j.jcp.2004.11.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the meshless local Petrov-Galerkin (MLPG) method is extended to dealing with nonlinear water wave problems. The formulation is based on general fluid governing equations and a time marching procedure. At each time step, the boundary value problem for the pressure is solved using the MLPG method; and the velocity and position of nodes are updated by numerical integration. The newly-extended method is applied to simulating water waves generated by a wave maker and good agreement with analytical solutions and finite element results is presented. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:611 / 625
页数:15
相关论文
共 50 条
  • [31] Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems
    Atluri, S. N.
    Liu, H. T.
    Han, Z. D.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 14 (03): : 141 - 152
  • [32] Meshless local Petrov-Galerkin formulation for problems in composite micromechanics
    Dang, Thi D.
    Sankar, Bhavani V.
    [J]. AIAA JOURNAL, 2007, 45 (04) : 912 - 921
  • [33] A Comparison of the Element Free Galerkin Method and the Meshless Local Petrov-Galerkin Method for Solving Electromagnetic Problems
    He, Wei
    Liu, Zehui
    Gordon, Richard K.
    Hutchcraft, W. Elliott
    Yang, Fan
    Chang, Afei
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2012, 27 (08): : 620 - 629
  • [34] Two-dimensional magnetotelluric modeling using the Meshfree Local Petrov-Galerkin method
    Lu Jie
    Li Yu-Guo
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (03): : 1189 - 1200
  • [35] Analysis of Thermoelastic Waves in a Two-Dimensional Functionally Graded Materials Domain by the Meshless Local Petrov-Galerkin (MLPG) Method
    Akbari, Ahmad
    Bagri, Akbar
    Bordas, Stephane P. A.
    Rabczuk, Timon
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 65 (01): : 27 - 74
  • [36] Anisotropic transient thermoelasticity analysis in a two-dimensional decagonal quasicrystal using meshless local Petrov-Galerkin (MLPG) method
    Hosseini, Seyed Mahmoud
    Sladek, Jan
    Sladek, Vladimir
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 66 : 275 - 295
  • [37] Improving the Mixed Formulation for Meshless Local Petrov-Galerkin Method
    Fonseca, Alexandre R.
    Correa, Bruno C.
    Silva, Elson J.
    Mesquita, Renato C.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2907 - 2910
  • [38] Direct meshless local Petrov-Galerkin method for elastodynamic analysis
    Mirzaei, Davoud
    Hasanpour, Kourosh
    [J]. ACTA MECHANICA, 2016, 227 (03) : 619 - 632
  • [39] Meshless Local Petrov-Galerkin Method for Heat Transfer Analysis
    Rao, Singiresu S.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8A, 2014,
  • [40] Imposing boundary conditions in the meshless local Petrov-Galerkin method
    Fonseca, A. R.
    Viana, S. A.
    Silva, E. J.
    Mesquita, R. C.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2008, 2 (06) : 387 - 394